Date: 27 / 05 / 2019

JEE Advanced Exam 2019 (Paper & Solution)

PAPER-2

PART-I (CHEMISTRY)

SECTION - 1 (Maximum Marks: 32)

- This section contains **EIGHT (08)** questions
- Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s).
- For each question, choose(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks: +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both

of which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option.

Zero Marks : **0** If none of the option is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other comination of options will get -1 mark

Q.1 The cyanide process of gold extraction involves leaching out gold from its ore with CN in the presence of Q in water to form R. Subsequently, R is treated with T to obtain Au and Z. Choose the correct options(s)

(1) Z is
$$[Zn(CN)_4]^{2-}$$

$$(3)$$
 Q is O_2

(4) R is
$$[Au(CN)_4]^-$$

Ans. [1,2,3]

Sol. Au + CN⁻(aq.) + $O_2 \xrightarrow{H_2O}$ [Au(CN)₂]⁻(aq.) + OH⁻

 $[Au(CN)_2]^-(aq.) + Zn(s) \rightarrow [Zn(CN)_4]^{2-} + 2Au(s)$

CAREER POINT Paper-2

Q.2 Which of the following reactions produce(s) propane as a major product?

Br
(1)
$$H_3C$$
Br
 Z_n
(2) H_3C
COONa + H_2O
electrolysis
(4) H_3C
COONA
NaOH, CaO, Δ

Ans. [2,4]

Sol.
$$CH_3$$
- CH_2 - CH_2 - $C1$ $\xrightarrow{Reduction}$ CH_3 - CH_2 - CH_3

$$CH_3$$
- CH_2 - CH_2 - C - C - O \ominus Na $\xrightarrow{NaOH^+}$ CH_3 - CH_2 - CH_3

$$O$$

- Q.3 With reference to aqua regia, choose the correct option(s)
 - (1) Reaction of gold with aqua regia produces NO₂ in the absence of air
 - (2) Reaction of gold with aqua produces an anion having Au in +3 oxidation state
 - (3) The yellow colour of agua regia is due to the presence of NOCl and Cl₂
 - (4) Aqua regia is prepared by mixing conc. HCl and conc. HNO₃ in 3:1 (v/v) ratio

Ans. [2,3,4]

Sol.
$$HNO_3 + 3HCl \rightarrow NOCl + 2H_2O + 2|Cl|$$

 $Au + 3|Cl| \rightarrow \stackrel{+3}{AuCl_3} \stackrel{HCl}{\longrightarrow} H \stackrel{+3}{AuCl_4}$

- The ground state energy of hydrogen atom is -13.6 eV. Consider an electronic state ψ of He⁺ whose **Q.4** energy, azimuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0, respectively. Which of the following statement(s) is(are) true for the state ψ ?
 - (1) The nuclear charge experienced by the electron in this state is less than 2e, where e is the magnitude of the electronic charge
 - (2) It has 2 angular nodes
 - (3) It has 3 radial nodes
 - (4) It is a 4d state

Ans. [2,4]

Sol. He⁺ = (z = 2)
E_n = -13.6
$$\frac{z^2}{n^2}$$
 = -3.4
-13.6 $\frac{(2)^2}{n^2}$ = -3.4

$$n^2 = 4^2$$

$$n = 4$$

$$x = 4, \ \ell = 2, \ m = 0$$
 (4dz²)

- 1. Nuclear charge = +2e
- 2. Angular Nodes = $\ell = 2$
- 3. Radial Nodes = $n \ell 1 = 4 2 1 = 1$
- 4. 4d

- Q.5 Choose the correct option(s) from the following
 - (1) Cellulose has only α -D-glucose units that are joined by glycosidic linkages
 - (2) Natural rubber is polyisoprene containing trans alkene units
 - (3) Nylon-6 has amide linkages
 - (4) Teflon is prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high

Ans. [3,4]

- **Sol.** (1) Cellulose has β -D-glucose
 - (2) Natural Rubber \rightarrow Polyisoprene (cis form)

(3)
$$+NH+CH_2+_6$$
 $NH-C$ $+CH_2+_6$ $C+_2$

(4)
$$CF_2 = CF_2 \xrightarrow{2SO_4^{\ominus}} (CF_2 - CF_2)_n$$

Q.6 Consider the following reactions (unbalanced)

$$Zn + hot conc. H_2SO_4 \rightarrow G + R + X$$

$$Zn + conc. NaOH \rightarrow T + Q$$

$$G + H_2S + NH_4OH \rightarrow Z$$
 (a precipitate) + X + Y

Choose the correct option(s)

- (1) Bond order of Q is 1 in its ground state
- (2) Z is dirty white is colour

(3) R is a V-shaped molecule

(4) The oxidation state of Zn in T is +1

Ans. [1,2,3]

Sol.
$$Zn + Hot ConC \cdot H_2SO_4 \longrightarrow ZnSO_4 + SO_2 + H_2O$$

(G) (R) (X)

$$Zn + ConC \cdot NaOH \longrightarrow Na_2 ZnO_2 + H_2(B \cdot O = 1)$$
(T) (Q)

$$ZnSO_4 + H_2S + NH_4OH \longrightarrow ZnS \downarrow + (NH_4)_2 SO_4 + H_2O$$
(Z) (Y) (X)
(Dirty white)

Q.7 Choose the correct option(s) that give(s) an aromatic compound as the major product

$$(3) \qquad NaOMe \rightarrow$$

Ans. [3,4]

Sol. (3)
$$\stackrel{\text{H}}{\bigcirc}$$
 $\stackrel{\text{OMe}}{\bigcirc}$ Aromatic $\stackrel{\text{CH}_3}{\bigcirc}$

$$(4) CH_3 - CH - CH \longrightarrow CH_3$$

$$\downarrow \qquad \qquad CH_3$$

$$CH_3$$

$$CH_3$$

Q.8 Choose the correct option(s) for the following reaction sequence

CHO (i)
$$Hg^{2+}$$
, dil. H_2SO_4 (i) $SOCl_2$ pyridine Q (ii) $AlCl_3$ R Cho (iii) $Zn-Hg$, conc. HCl (ii) $AlCl_3$

Consider Q, R and S as major products

$$(1)$$
 (1)

Q

$$\begin{array}{c} OH \\ CO_2H \\ \end{array}$$

R

(4) MeO R

MeO S

Ans. [1,4]

SECTION - 2 (Maximum Marks: 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value of TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks : +3 If ONLY the correct numerical value is entered as answer.

Zero Marks : 0 In all other cases.

Q.1 The amount of water produced (in g) in the oxidation of 1 mole of rhombic sulphur by conc. HNO₃ to a compound with the highest oxidation state of sulphur is ______ (Given data : Molar mass of water = 18 g mol⁻¹)

Ans. [288 gm]

- Sol. $S_8 + 48 \text{ HNO}_3 \longrightarrow 8 \text{ H}_2\text{SO}_4 + 48 \text{ NO}_2 + 16 \text{ H}_2\text{O}$ Mole of water = 18 Amount of water produced = $16 \times 18 = 288 \text{ gm}$
- Q.2 Total number of hydroxyl groups present in a molecule of the major product P is _____

Ans. [6]

Sol.

Q.3 Total number of isomers, considering both structural and stereoisomers, of cyclic ethers with the molecular formula C_4H_8O is _____

Ans. [10]

Sol.

= 10

Q.4 The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05. If the density of the solution is 1.2 g cm⁻³, the molarity of urea solution is ______ (Given data: Molar masses of urea and water are 60 g mol⁻¹ and 18 g mol⁻¹, respectively)

Ans. [2.98]

Sol. mole fraction urea

$$X = \frac{n_A}{n_A + n_B} = 0.05$$

$$\frac{n_A}{n_A + \frac{900}{18}} = 0.05$$

$$\frac{n_{A}}{n_{A} + 50} = 0.05$$

$$n_A = 0.05 n_A + 2.5$$

$$0.95 \text{ n}_{A} = 2.5$$

$$n_A = \frac{2.5}{0.95} = \frac{250}{95}$$

In Urea =
$$\frac{250}{95} \times 60 = 157.89$$

$$M = \frac{\text{Moles (Solute)}}{V_L(\text{Solution})} = \frac{250/95}{\underbrace{(900+157.89)}}_{1.2 \times 1000} = \frac{250 \times 1.2 \times 1000}{95 \times 1057.89} = 2.985 = 2.98M$$

The decomposition reaction $2N_2O_5(g) \xrightarrow{\Delta} 2N_2O_4(g) + O_2(g)$ is started in a closed cylinder under **Q.5** isothermal isochoric condition at an initial pressure of 1 atm. After $Y \times 10^3$ s, the pressure inside the cylinder is found to be 1.45 atm. If the rate constant of the reaction is $5 \times 10^{-4} \text{ s}^{-1}$, assuming ideal gas behaviour, the value of Y is _____

Ans. [2.30]

Sol. $2N_2O_5(g) \rightleftharpoons 2 N_2O_4(g) + O_2$

 $P_1 - P_2$ P_2

 $P_1 = 1$

$$P_1 + \frac{P_2}{2} = 1.45$$

$$\frac{P_2}{2} = 1.45 - 1 = 0.45$$

$$P_2 = 0.9$$

$$k = 5 \times 10^{-4} \text{ sec}^{-1}$$

It is I order reaction.

$$k_1 = \frac{2.303}{2 \times t} \log \frac{P_0}{P_t}$$
 $P_t = P_1 - P_2 = 1 - 0.45 = 0.55$

$$P_t = P_1 - P_2 = 1 - 0.45 = 0.55$$

$$5 \times 10^{-4} = \frac{2.303}{2 \times t} \log \frac{1}{0.1}$$

$$t = \frac{2.303}{2 \times 5 \times 10^{-4}} \left[log \frac{1.0}{0.1} \right] = \frac{2.303}{10^{-3}} \times 1 = 2.303 \times 10^{3} \text{ sec}$$

Hence on comparing y = 2.30 nearly rounding up to two decimal place

- **Q.6** Total number of cis N-Mn-Cl bond angles (that is, Mn-N and Mn-Cl bonds in cis positions) present in a molecule of cis-[Mn(en)₂Cl₂] complex is _____ (en = $NH_2CH_2CH_2NH_2$)
- Ans. [6]
- Sol. $[Mn(en)_2Cl_2]$

SECTION – 3 (Maximum Marks: 12)

- This section contains Two (02) List-Match sets.
- Each List-Match set has **TWO (02)** Multiple Choice Questions.
- Each List-Match set has two lists: List-I and List-II
- **List-I** has Four entries (I), (II), (III) and (IV) and List-II has Six entries (P), (Q), (R), (S), (T) and (U).
- FOUR options are given in each Multiple Choice Question based on List-II and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- For each question, marks will be awarded according to the following marking scheme:

Full Marks : +3 If ONLY the option corresponding to the correct matching is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered.)

Negative Marks: -1 In all other cases.

Answer the following by appropriately matching the lists based on the information given in the paragraph.

Q.1 Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following. List-I contains some quantities for the nth orbit of the atom and List-II contains options showing how they depend on n.

LIST-I

- LIST-II
- Radius of the nth orbit **(I)**

- $\propto n^{-2}$ **(P)** (Q) $\propto n^{-1}$
- Angular momentum of the electron in the nth orbit (II)
- (III) Kinetic energy of the electron in the nth orbit
- (R) $\propto n^0$
- Potential energy of the electron in the nth orbit
- **(S)** $\propto n^1$
- $\propto n^2$ (T)
- $\propto n^{1/2}$ (U)

- (1) (III), (P)
- (2) (III), (S)
- (3) (IV), (U)
- (4) (IV), (Q)

Ans. [1]

- (I) $r = 0.529 \frac{n^2}{3}$ Sol. $r \propto n^2$
 - (II) Angular momentum = $mvr = \left(\frac{z}{n}\right)\left(\frac{n^2}{z}\right) = \frac{nh}{2\pi}$

An ∝ n'

 $I \rightarrow T$

 $II \rightarrow S$

- (III) $k \cdot E = -T \cdot E = +13.6 \frac{z^2}{n^2}$ $k\cdot E \propto n^{-2}$
- (IV) $P \cdot E = \frac{T \cdot E}{2} = \frac{-13.6}{2} \frac{z^2}{n^2}$ $P\cdot E \ \propto n^{-2}$

Q.2 Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following. List-I contains some quantities for the nth orbit of the atom and List-II contains options showing how they depend on n.

LIST-I

- (I) Radius of the nth orbit
- (II) Angular momentum of the electron in the nth orbit
- (III) Kinetic energy of the electron in the nth orbit
- (IV) Potential energy of the electron in the nth orbit
- (Q) $\propto n^{-1}$
- (R) $\propto n^0$
- (S) $\propto n^1$
- (T) $\propto n^2$
- (U) $\propto n^{1/2}$

- (1)(I),(P)
- (2)(I),(T)
- (3) (II), (R)
- (4)(II),(Q)

Ans. [2]

Sol. $r \propto n^2$

 $Am \propto n^1$

 $K.E \propto n^{-2}$

 $P.E \propto n^{-2}$

Q.3 List-I includes starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I.

(I)
$$CN$$
 (i) DIBAL-H (ii) dil. HCl (iii) NaBH₄ (iv) conc. H₂SO₄

(III) (i) KCN

$$Cl$$
 (ii) H_3O^+, Δ
 CO_2CH_3 (iv) conc. H_2SO_4

(IV)
$$CO_2Me$$
 (i) LiAlH₄ (ii) conc. H₂SO₄

(S)
$$OH$$
 CO_2H

Which of the following options has correct combination considering List-I and List-II?

(1)(I),(Q),(T),(U)

(2) (II), (P), (S), (U)

(3) (II), (P), (S), (U)

(4)(I),(S),(Q),(R)

Ans.

[2]

Sol.
$$CH_2 - CH = CH_2$$

$$CO_2H$$

$$CO_2H$$

$$CH_2 - CH - H$$

$$CO_2H$$

$$NaBH_4$$

$$CH_2 - CH_2 - CH_2 - CH$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

Q.4 List-I includes starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I.

Ans. [1]

Sol.
$$CO_2Me$$

$$CO_2Me$$

$$CO_2Me$$

$$CO_2-CH_2$$

$$Conc. H_2SO_4$$

$$(R)$$