CAREER POINT JEE Main Online Exam 2019

Questions & Solutions

9th April 2019 | Shift - I

CHEMISTRY

Q.1 Liquid 'M' and liquid 'N' form an ideal solution. The vapour pressures of pure liquids 'M' and 'N' are 450 and 700 mmHg, respectively, at the same temperature. Then correct statements is :

 $(x_M = Mole fraction of 'M' in solution;$

 x_N = Mole fraction of 'N' in solution;

 y_M = Mole fraction of 'M' in vapour phase;

 y_N = Mole fraction of 'N' in vapour phase)

(1)
$$\frac{x_M}{x_N} < \frac{y_M}{y_N}$$
 (2) $\frac{x_M}{x_N} = \frac{y_M}{y_N}$ (3) $\frac{x_M}{x_N} > \frac{y_M}{y_N}$ (4) $(x_M - y_M) < (x_N - y_N)$

 $P_{M}^{\circ} = 450$ Sol. $P_{N}^{\circ} = 700$ $y_{\rm M} = \frac{P_{\rm M}^{\circ} X_{\rm M}}{P_{\rm S}}$ $y_{\rm N} = \frac{P_{\rm N}^{\circ} X_{\rm N}}{P_{\rm S}}$ $\frac{y_M}{y_N} = \frac{P_M^\circ}{P_N^\circ} \frac{X_M}{X_N}$ $\frac{y_{\rm M}}{y_{\rm N}} = \frac{450}{700} \frac{X_{\rm M}}{X_{\rm N}}$ $\frac{X_M}{X_N} > \frac{y_M}{y_N}$

Q.2 The given plots represent the variation of the concentration of a reactant R with time for two different reactions (i) and (ii). The respective orders of the reactions are :

www.careerpoint.ac.in

Ō

Q.3 The one that will show optical activity is : (en = eithane-1,2-diamine)

Ans.

No plane of symmetry ∴ optically active

en

Q.4 The major product of the following reaction is :

Ans. [4]

CAREER POINT Ltd., CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-6630500

 \therefore 4, H₂O molecules are coordinated directly.

Q.9	Match the catalysts (Column I) with products (Column II).						
	Column I	Column II	``````````````````````````````````````				
	Catalyst	Product					
	(A) V_2O_5	(i) Polyethylene					
	(B) $TiCl_4/Al(Me)_3$	(ii) ethanal					
	(C) $PdCl_2$	(iii) H ₂ SO ₄					
	(D) Iron Oxide	(iv) NH ₃					
	(1) (A)-(iii); (B)-(iv); (C)-(i); (D)-(ii)		(2) (A)-(ii); (B)-(iii); (C)-(i); (D)-(iv)				
	(3) (A)-(iv); (B)-(iii); (C)-(ii); (D)-(i)		(4) (A)-(iii); (B)-(i); (0	(4) (A)-(iii); (B)-(i); (C)-(ii); (D)-(iv)			
Ans.	[4]						
Sol.	(A)-(iii); (B)-(i); (C)-(ii); (D)-(iv)						
Q.10	Excessive release of C (1) depletion of ozone	CO_2 into the atmosphere (2) polar vortex	results in : (3) global warming	(4) formation of smog			
Ans.	(¹)	(-) F	(*) 88	(.)			
Sol.	Fact						
Q.11	C ₆₀ , an allotrope of carbon contains :						
	(1) 16 hexagons and 16 pentagons.		(2) 12 hexagons and 2	(2) 12 hexagons and 20 pentagons.			
	(3) 18 hexagons and 1	4 pentagons.	(4) 20 hexagons and 1	(4) 20 hexagons and 12 pentagons.			
Ans.	[4]						
Sol.	C ₆₀ contains 20 hexagons and 12 pentagons						
Q.12	Among the following, the molecule expected to be stabilized by anion formation is : C = O = NO						
	C_2, O_2, NO, Γ_2 (1) NO	$(2) O_2$	$(3) C_2$	(4) F_2			
Ans.	[3]	() - 2	(-) -2	() 2			
Sol.	The molecule in which B Ω^{\uparrow} with formation of an ion will get stabilize						
	$F_2 \longrightarrow F_2^ C_2 \rightarrow C_2^{-1}$						
	BO 1 0.5	BO 2 2.5	5				
	NO — NC	$0^ 0_2 \rightarrow 0_2^+$	-1 2				
	BO 2.5 2.0	2 1.5	5				
	\therefore Ans. C ₂ (3)						
Q.13	The osmotic pressure of a dilute solution of an ionic compound XY in water is four times that of a solution of 0.01 M BaCl ₂ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of XY (in mol L^{-1}) in colution is :						
	$(1) 4 \times 10^{-4}$	(2) 4×10^{-2}	(3) 16×10^{-4}	(4) 6×10^{-2}			
Ans.	[4]						
Sol.	$\pi_{xy} = 4\pi_{BaCl_2}$						
	iCRT = 4(iCRT)						
	$2C = 4 \times 3(0.01)$ $C = 0.06 = 6 \times 10^{-2} M$	ſ					
	$C = 0.00 = 0 \times 10^{-10}$ M	L					

🦻 🛛 CAREER POINT

Þ

Q.18	The aerosol is a kind of colloid in which :					
	(1) gas is dispersed in liquid		(2) solid is dis	(2) solid is dispersed in gas		
	(3) liquid is dispersed	in water	(4) gas is disp	ersed in solid		
Ans.	[2]					
Sol.	Acrosol = solid is dispersed in gas					
Q.19	The ore that contains the metal in the form of fluoride is :					
	(1) cryolite	(2) magnetite	(3) malachite	(4) sphalerite		
Ans.	[1]					
Sol.	Cujolite = Na_3AlF_6					
	Contain fluoride					
		2				
Q.20	The degenerate orbitals of $[Cr(H_2O)_6]^{3+}$ are :					
	(1) $d_z 2$ and d_{xz}	(2) d_{yz} and $d_z 2$	(3) d_{xz} and d_{yz}	(4) $d_{x^2-y^2}$ and d_{xy}		
Ans	[3]			,		
Sol	1. $[Cr(H_2O)_6]^{+3}$ has sp ³ d ² hybridization orbitals involved are S, P _x , P _y , P _z , d _{x²-y²} and d _z 2. None of the options are correct.					
501.						
Q.21	Consider the van der Waals constants, a and b, for the following gases.					
	Gas	Ar Ne	Kr Xe	e		
	$a/(atm dm^{\circ} mol^{-2})$	1.3 0.2	5.1 4.	1		
	$b/(10^{-2} \text{ dm}^3 \text{ mol}^{-1})$	3.2 1.7	1.0 5.0	0		
	Which gas is expected	to have the highest critic	cal temperature?			
	(1) Xe	(2) Ne	(3) Kr	(4) Ar		
Ans.	[3]					
Sol.	$T_c = \frac{8a}{3}$					
2010	27Rb					
	T ~ a					
	$1C \propto \frac{1}{b}$					
	Vr has high ast ratio or	a				
	KI has highest fatio of	b				
Q.22	For a reaction,					
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; identify dihydrogen (H ₂) as a limiting reagent in the following react						
	(1) 14 g of N_2 + 4g of	H ₂	(2) 28 g of N ₂	$+ 6g \text{ of } H_2$		
	(3) 56 g of N_2 + 10g of	fH ₂	(4) 35 g of N ₂	$+ 8g \text{ of } H_2$		
Ans.	[3]			-		
Sol.	$N_2 + 3H_2 \longrightarrow 2NH_3$					
	1. 14gm 4gm					
	1					
	$\frac{-}{2}$ mole 2 mole	5				
	_ [1]					
	$\left \frac{1}{2}\right $ (2)					
	L.K $\left \frac{2}{1}\right $ $\left(\frac{-3}{3}\right)$					
	(N ₂)					

- 2. 28 gm 6 gm 3 mole 1 mole $\left(\frac{1}{1}\right)$ $\left(\frac{3}{3}\right)$ 3. 56 gm 10 gm 2 mole 5 mole $\left(\frac{2}{1}\right)$ $\left(\frac{5}{3}\right) = (1.66) \operatorname{H}_2$ 4. 35 gm 8 gm $\frac{35}{28}$ mole 4 mole $\frac{4}{3}$ 35 28 = 1.25 1.33 (N_2)
- Q.23 For any given series of spectral lines of atomic hydrogen, let $\Delta \overline{v} = \overline{v}_{max} \overline{v}_{min}$ be the difference in maximum and minimum frequencies in cm⁻¹. The ratio $\Delta \overline{v}_{Lyman} / \Delta \overline{v}_{Balmer}$ is :
- (1) 4 : 1 (2) 9 : 4 (3) 27 : 5 (4) 5 : 4 Ans. [2] Sol. $\frac{\Delta \overline{v}_{Lyman}}{\Delta \overline{v}_{Balmar}} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ $= \frac{\Delta \overline{v}_{max} - \Delta \overline{v}_{min}}{\Delta \overline{v}_{max} - \Delta \overline{v}_{min}}$ $= \frac{\left[\frac{1}{1} - \frac{1}{\infty} \right] - \left[\frac{1}{1} - \frac{1}{4} \right]}{\left[\frac{1}{4} - \frac{1}{\infty} \right] - \left[\frac{1}{4} - \frac{1}{9} \right]}$ $= \frac{\frac{1}{4}}{\frac{1}{9}} = \frac{9}{4}$ = 9 : 4
- **Q.24** The increasing order of reactivity of the following compounds towards aromatic electrophilic substitution reaction is :

(i) CH₃CD(Cl)CHD(I) (2) CH₃CD₂CH(Cl)(I) (3) CH₃CD(I)CHD(Cl) (4) CH₃C(I)(Cl)CHD₂
Ans. [4]
Sol. CH₃-C = C-H
$$\xrightarrow{DCl}$$
 CH₃-C = CH-D
 $Cl \qquad \int DI$
 CH_3-C -CHD₂
 Cl

CAREER POINT Ltd., CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-6630500

Q.28 The major product of the following reaction is :

 $CH_{3}CH = CHCO_{2}CH_{3} \xrightarrow{\text{LiAlH}_{4}}$ (1) CH_{3}CH_{2}CH_{2}CO_{2}CH_{3} (2) CH_{3}CH_{2}CH_{2}CH_{2}OH (3) CH_{3}CH = CHCH_{2}OH (4) CH_{3}CH_{2}CH_{2}CHO Ans. [3] Sol. CH_{3}-CH = CH - C - O - CH_{3} U U U U U (1°-Alcohol) Q.29 Which of the following statements is not true about sucrose?

- (1) On hydrolysis, it produces glucose and fructose
- (2) It is also named as invert sugar. The glycosidic linkage is present
- (3) between C_1 of α -glucose and C_1 of β -fructose
- (4) It is a non reducing sugar

Sol. Sucrose $\xrightarrow{+H_2O} \alpha$ -D-Glucose

β-D-Fructose

In β -D-Fructose \rightarrow C-2 in involved

In β -D-Glucose \rightarrow C-1 in involved

Q.30 Aniline dissolved in dilute HCl is reacted with sodium nitrite at 0°C. This solution was added dropwise to a solution containing equimolar mixture of aniline and phenol in dil. HCl. The structure of the major product is

