

CAREER POINT

JEE (Main & Advanced)

OTS

SAMPLE PAPER

Physics, Chemistry & Mathematics

Paper-1

Time : 3 Hours

Maximum Marks : 180

SYLLABUS

Physics : Full Syllabus

Chemistry : Full Syllabus

Mathematics : Full Syllabus

IMPORTANT INSTRUCTIONS

A. GENERAL :

1. Please read the instructions given for each question carefully and mark the correct answers against the question numbers on the answer sheet in the respective subjects.
2. The answer sheet, a machine readable Optical Mark Recognition (OMR) is provided separately.
3. Do not break the seal of the question-paper booklet before being instructed to do so by the invigilators.

B. MARKING SCHEME :

Each subject in this paper consists of following types of questions:-

SECTION - I

4. Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s). For each question, choose the correct option(s) to answer the question.

Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If none of the option is chosen (i.e. the question is unanswered).

Negative Marks : -2 In all other cases.

SECTION - II

5. Numerical response type questions. **+3 marks** will be awarded for each correct answer and **0 marks** in all other cases. **The answer to each of the questions is to be given upto second decimal place (truncated/rounded-off); e.g. 6.25, 7.00, -0.33, -30, 30.27, -127.30).**
6. Answers to be written in clear and legible hand writing.

SECTION - III

7. Passage based multiple choice questions with **ONLY ONE correct** option. **+3 marks** will be awarded for each correct answer, **0 mark** If none of the options is chosen (i.e. the question is unanswered.) and **-1 mark** in all other cases.

C. FILLING THE OMR :

8. Fill your Name, Roll No., Batch, Course and Centre of Examination in the blocks of OMR sheet and darken circle properly.
9. Use only HB pencil or blue/black pen (avoid gel pen) for darkening the bubbles.

For example if only 'A' choice is correct then, the correct method for filling the bubbles is :

A	B	C	D
●	○	○	○

For example if only 'A & C' choices are correct then, the correct method for filling the bubbles is :

A	B	C	D
●	○	●	○

the wrong method for filling the bubble are :

○	⊗	◎	◐
---	---	---	---

The answer of the questions in wrong or any other manner will be treated as wrong.

CODE-25

PT/S/26/MJ-12/PCM-1

PHYSICS

Section – I [Q.1 to Q.6]

This section contains **SIX (06)** questions. (**Q.No. 1 to 6**). Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s). For each question, choose the correct option(s) to answer the question. Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If none of the option is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

Q.1 One mole of a monoatomic ideal gas undergoes a thermodynamic process such that $\frac{V^3}{T^2} = \text{constant}$.

Then,

(A) work done by the gas is 200 R when temperature of the gas is raised by 300 K

(B) the specific heat of the gas in the process is $\frac{13}{6} R$

(C) work done by the gas is 300 R when temperature of the gas is raised by 600 K

(D) the specific heat of the gas in the process is $\frac{21}{4} R$

खण्ड – I [प्र.1 से प्र.6]

इस खण्ड में **6** बहुविकल्पी प्रश्न (प्र.1 से 6) तक हैं। प्रत्येक प्रश्न के सही उत्तर (उत्तरों) के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से एक या एक से अधिक विकल्प सही है (हैं)। प्रत्येक प्रश्न के लिए, प्रश्न का (के) उत्तर देने हेतु सही विकल्प (विकल्पों) को चुनें। प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न अंकन योजना के अनुसार होगा :

पूर्ण अंक : +4 यदि सभीं सही विकल्प/विकल्पों को चुना गया है।

आंशिक अंक : +3 यदि चारों विकल्प सही है, परन्तु केवल तीन विकल्पों को चुना गया है।

आंशिक अंक : +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और चुने हुए दोनों विकल्प सही विकल्प हैं।

आंशिक अंक : +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प सही विकल्प है।

शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है। (अर्थात् प्रश्न अनुत्तरित है)।

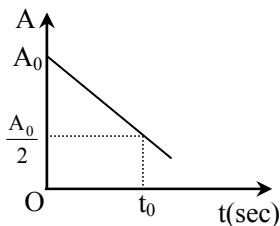
ऋणात्मक अंक: -2 अन्य सभी परिस्थितियों में।

Q.1 एक एकलपरमाणु आदर्श गैस का एक मोल, एक ऊप्सागतिकीय प्रक्रम के अधीन है, इस प्रकार कि $\frac{V^3}{T^2} = \text{नियत है तो,}$

(A) जब गैस का ताप 300 K द्वारा बढ़ाया जाता है गैस द्वारा किया गया कार्य 200 R है

(B) प्रक्रम में गैस की विशिष्ट ऊप्सा $\frac{13}{6} R$ हैं

(C) जब गैस का ताप 600 K द्वारा बढ़ाया जाता है गैस द्वारा किया गया कार्य 300 R है

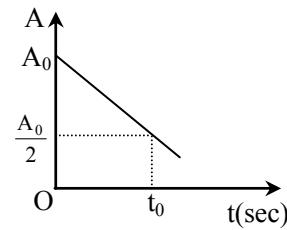

(D) इस प्रक्रम में गैस की विशिष्ट ऊप्सा $\frac{21}{4} R$ है

Space for rough work

Q.2 A conducting sphere of radius R , carrying charge Q , lies inside an uncharged conducting shell of radius $2R$. If they are joined by a metal wire,

(A) $Q/3$ amount of charge will flow from the sphere to the shell
 (B) $2Q/3$ amount of charge will flow from the sphere to the shell
 (C) Q amount of charge will flow from the sphere to the shell
 (D) $\frac{kQ^2}{4R}$ amount of heat will be produced

Q.3 A radioactive nuclide decays with a constant λ . Let $A = \log \left| \frac{dN}{dt} \right|$, where $\left| \frac{dN}{dt} \right|$ is the number of radioactive decay acts taking place per second. Suppose the experiment starts at $t = 0$ and the curve between A and t is shown in the adjacent figure.

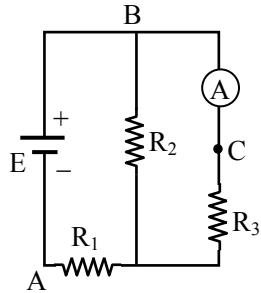

Now, choose the correct statements (s) from the following.

(A) Decay constant of the radioactive sample is $\frac{A_0}{2t_0}$.
 (B) Number of radioactive nuclei at the start of the experiment was $\frac{t_0}{A_0} e^{A_0}$.
 (C) Number of radioactive nuclei after half-life is $\frac{t_0}{A_0} e^{A_0}$.
 (D) Half-life of the radioactive sample is t_0 .

Q.2 एक चालक गोले की त्रिज्या R है यह Q आवेश रखता है, यह गोला $2R$ त्रिज्या के अनावेशित चालक कोश के अन्दर स्थित है यदि इन्हें एक चालक तार द्वारा जोड़ा जाता है तो-

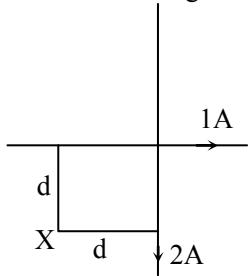
(A) $Q/3$ मात्रा का आवेश गोले से कोश पर प्रवाहित होगा
 (B) $2Q/3$ मात्रा को आवेश गोले से कोश पर प्रवाहित होगा
 (C) Q मात्रा को आवेश गोले से कोश पर प्रवाहित होगा
 (D) $\frac{kQ^2}{4R}$ मात्रा की ऊर्जा उत्पन्न होगी

Q.3 एक रेडियो सक्रिय नाभिक λ नियतांक के साथ क्षय होता है। मानाकि $A = \log \left| \frac{dN}{dt} \right|$, जहाँ $\left| \frac{dN}{dt} \right|$ प्रति सैकण्ड होने वाले रेडियो सक्रिय क्षयों की संख्या है। मानाकि प्रयोग $t = 0$ पर आरम्भ होता है व A तथा t के मध्य ग्राफ नीचे चित्र में दर्शाया गया है।

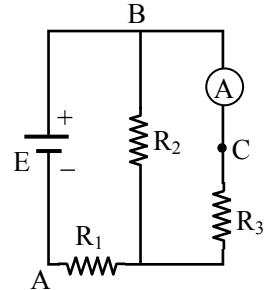


निम्न में से सही कथन चुनिये-

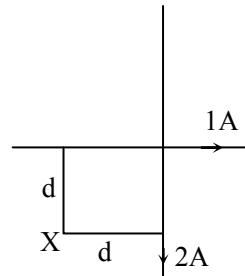
(A) रेडियो सक्रिय नमूने का क्षय नियतांक $\frac{A_0}{2t_0}$ है
 (B) प्रयोग के आरम्भ में रेडियो सक्रिय नाभिकों की संख्या $\frac{t_0}{A_0} e^{A_0}$ थी
 (C) अर्द्ध आयु के पश्चात् रेडियोसक्रिय नाभिक की संख्या $\frac{t_0}{A_0} e^{A_0}$ है
 (D) नमूने की अर्द्ध आयु t_0 है


Space for rough work

Q.4 In the adjoining circuit, the ammeter A reads a current of I_1 amp. Now, the source of emf and the ammeter are physically interchanged. i.e., the source is put between B and C and the ammeter between A and B. The ammeter now reads a current of I_2 amp. Then-


- (A) $I_1 > I_2$
- (B) $I_1 = I_2$
- (C) $I_1 < I_2$
- (D) the relation between I_1 and I_2 will depend upon the relative values of resistances R_1 , R_2 and R_3

Q.5 Figure shows two long conducting wires placed at right angles. They carry currents as indicated. Assume that 1 ampere current in a long wire produces magnetic field B' at a distance d from the wire. The strength and direction of field at a point X marked in figure will be-


- (A) $3B'$ into the plane of paper
- (B) B' into the plane of paper
- (C) B' out of the plane of paper
- (D) $3B'$ out of the plane of paper

Q.4 नीचे दर्शाए परिपथ में अमीटर I_1 ऐम्पियर पाठ्यांक देता है। अब वि.वा.ब्ल स्रोत व अमीटर को भौतिकीय रूप से अन्तरिवर्तित कर दिया जाता है अर्थात स्रोत को B व C के मध्य लगाया जाता है व अमीटर को A व B के मध्य लगाया जाता है। अब अमीटर I_2 ऐम्पियर पाठ्यांक देता है। तो -

- (A) $I_1 > I_2$
- (B) $I_1 = I_2$
- (C) $I_1 < I_2$
- (D) I_1 व I_2 के मध्य सम्बन्ध प्रतिरोधों R_1 , R_2 व R_3 के आपेक्षिक मानों पर निर्भर करेगा

Q.5 चित्र में दो लम्बे चालक तार एक दूसरे के लम्बवत् रखे हुये हैं। उनमें प्रवाहित धारा चित्र में निर्देशित है। यह माने की एक लम्बे तार में 1 ऐम्पियर की धारा तार से d दूरी पर चुम्बकीय क्षेत्र B' उत्पन्न करती है। चित्र में चिन्हित बिन्दु X पर चुम्बकीय क्षेत्र की तीव्रता तथा दिशा होगी -

- (A) $3B'$ कागज के तल में अन्दर की ओर
- (B) B' कागज के तल में अन्दर की ओर
- (C) B' कागज के तल के बाहर की ओर
- (D) $3B'$ कागज के तल के बाहर की ओर

Space for rough work

Q.6 With respect C frame (centre of mass frame of reference) of a two-particle system, some statements are given in following options. Mark out the correct statements (s).

- (A) The two particles may move in same direction.
- (B) The two particles must move in opposite directions.
- (C) The heavier particle may move with a larger speed than lighter particle.
- (D) One of the particle is stationary while other is moving with a smaller speed.

Q.6 एक द्वि कण निकाय के द्रव्यमान केन्द्र C के निर्देश तंत्र (द्रव्यमान केन्द्र के निर्देश तंत्र) के संदर्भ में, कुछ कथन निम्न विकल्पों में दिये गये हैं। इनमें से सही विकल्प चुनें।

- (A) दो कण समान दिशा में गति कर सकते हैं।
- (B) दो कण अवश्य विपरीत दिशाओं में गति करते हैं।
- (C) भारी कण, हल्के की कण की तुलना में अधिक चाल से गति कर सकता है।
- (D) इनमें से एक कण स्थिर है जबकि अन्य कम चाल से गतिशील है।

Section – II [Q.7 to Q.14]

This section contains **8 questions** (Q.7 to 14). **+3 marks** will be given for each **correct answer** and **0 marks** for all other cases. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -30, 30.27, -127.30). Answer of this section are to be written on the Numeric Response Answer Sheet provided with the test booklet.

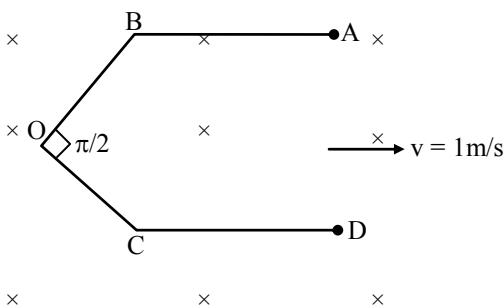
Q.7 An energy of 68.0 eV is required to excite a hypothetical hydrogen-like atom from its second Bohr orbit to third. The nuclear charge is Ze. Atomic number of the hydrogen-like atom is ?

Q.8 A long solenoid with 10 turns/cm and a radius of 7 cm carries a current of $\frac{20}{\pi}$ mA. A charge of $10 \mu\text{C}$ move along central axis of solenoid. What is magnetic force on charge ?

खण्ड – II [प्र.7 से प्र.14]

इस खण्ड में **8** (प्र.7 से 14) प्रश्न हैं। प्रत्येक सही उत्तर के लिये **+3** अंक दिये जाएंगे तथा **0** अंक अन्य सभी परिस्थितियों में। प्रत्येक प्रश्न के उत्तर के संख्यात्मक मान (दशमलव अंकन में, दशमलव के द्वितीय स्थान तक पूर्णक (rounded-off) कर) दीजिये, उदा: **6.25, 7.00, -0.33, -30, 30.27, -127.30**. इस खण्ड के उत्तर, प्रश्न पुस्तिका में दिये गये गणनात्मक उत्तर वाली शीट में ही भरियें।

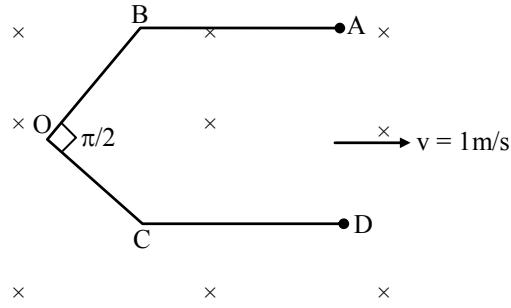
Q.7 एक काल्पनिक हाइड्रोजन सदृश्य परमाणु को इसकी द्वितीय बोहर कक्षा से तृतीय कक्षा में उत्तेजित करने के लिये एक 68.0 eV ऊर्जा की आवश्यकता होती है। नाभिकीय आवेश Ze है। हाइड्रोजन सदृश्य परमाणु का परमाणु क्रमांक क्या है ?


Q.8 एक लम्बी परिनिलिका में 10 घेरे/cm व त्रिज्या 7 cm है यह $\frac{20}{\pi}$ mA की धारा प्रवाहित रखती है। एक आवेश $10 \mu\text{C}$, परिनिलिका की केन्द्रीय अक्ष के अनुदिश गतिशील है। आवेश पर कार्यरत चुम्बकीय बल क्या है ?

Space for rough work

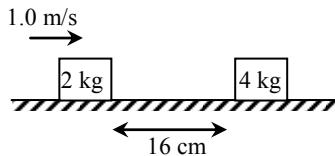
Q.9 A charge $Q_1 = 11\left(\frac{11}{3}\right)^{3/2} \times 10^{-9}$ C is located at the origin in free space and another charge Q at (2, 0, 0). If the x component of the electric field at (3, 1, 1) is zero. The value of Q is $a \times 11$ nC, then 'a' is ?

Q.10 A conductor ABOCD moves along its bisector with a velocity 1m/s through a perpendicular magnetic field of 1wb/m², as shown in figure. If all the four sides are 1m length each. Then the induced emf between A and D is in volt is $a \times \sqrt{2}$.

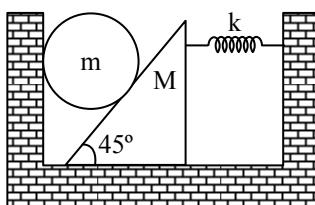

Then 'a' is

Q.11 A light ray propagate at 30° in a medium ($RI = 5/3$) enters another medium. The angle in other medium is $\sin^{-1}(5/6)$. How many minimum degrees the incident angle must be increased such that the ray is completely reflected.

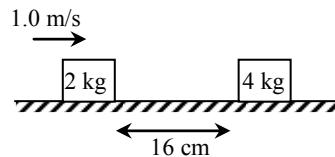
Q.9 एक आवेश $Q_1 = 11\left(\frac{11}{3}\right)^{3/2} \times 10^{-9}$ C, मूल बिन्दु पर स्थित है, मुक्त क्षेत्र में व अन्य आवेश Q, (2, 0, 0) पर स्थित है। यदि (3, 1, 1) पर विद्युत क्षेत्र का x घटक शून्य है, Q का मान $a \times 11$ nC है, तो 'a' का मान है ?


Q.10 एक चालक ABOCD अपने समद्विभाजक के अनुदिश 1m/s के वेग से चुम्बकीय क्षेत्र 1wb/m² के लम्बवत् रहते हुये नीचे दर्शये अनुसार गतिशील हैं यदि सभी चारों भुजाओं में से प्रत्येक 1m लम्बाई की है। तो A व D के मध्य प्रेरित विद्युत वाहक बल वोल्ट में $a \times \sqrt{2}$ । तो 'a' का मान होगा।

Q.11 एक माध्यम ($\text{अपवर्तनांक} = 5/3$) में से एक प्रकाश किरण 30° कोण पर संचरित होते हुए दूसरे माध्यम में पर प्रवेश करती है। दूसरे माध्यम में कोण $\sin^{-1}(5/6)$ है। आपतित कोण को न्यूनतम कितने डिग्री से बढ़ाया जाना चाहिए। ताकि प्रकाश किरण पूर्णतया परावर्तित हो जाये।

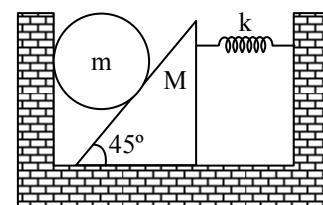

Space for rough work

Q.12 The friction coefficient between the horizontal surface and each of the block shown in the figure is 0.2. The collision between the blocks is perfectly elastic. Find the separation (in cm) between them when they come to rest.
Take $g = 10 \text{ m/s}^2$.



Q.13 Two sound waves of frequencies 100 Hz and 102 Hz and having same amplitude 'A' are interfering. A stationary detector which can detect waves of amplitude greater than or equal to A. In a time interval of 12 seconds, find the total duration (in sec.) which detector is active.

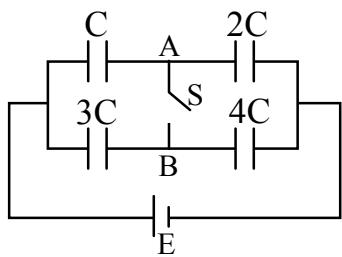
Q.14 All surfaces shown in figure are smooth. System is released with the spring unstretched. In equilibrium compression in the spring will be $\frac{N}{k} mg$. Find N.



Q.12 नीचे दर्शाये चित्र में थैतिज सतह व प्रत्येक ब्लॉक के मध्य घर्षण गुणांक 0.2 है ब्लॉकों के मध्य टक्कर पूर्णतः प्रत्यास्थ है। इनके मध्य पृथकता (cm में) क्या है, जब यह विराम में आते हैं। दिया है $g = 10 \text{ m/s}^2$.

Q.13 100 Hz व 102 Hz तथा समान आयाम 'A' की दो ध्वनि तरंगें व्यतिकृत होती हैं। एक संसूचक जो A के बराबर या अधिक आयाम की तरंगों को संसूचित कर सकता है, विराम में स्थित है। 12 सेकण्ड के समय अन्तराल में, कुल अन्तराल (sec. में) ज्ञात कीजिये जिसमें संसूचक सक्रिय होता है

Q.14 नीचे चित्र में दर्शाई सभी सतहें चिकनी हैं। निकाय को स्प्रिंग की मूल लम्बाई अवस्था में रहते हुये छोड़ा गया है साम्यावस्था में स्प्रिंग में संपीड़न $\frac{N}{k} mg$ हो। N ज्ञात करें।

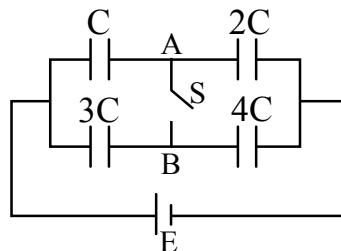

Space for rough work

Section – III [Q.15 to Q.18]

There are **2 paragraphs**; each has **2 multiple choice questions (Questions 15 to 18)**. Each question has Four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. Mark your response in OMR sheet against the question number of that question. **+3 marks** will be given for each **correct answer**, **0 mark** If none of the options is chosen (i.e. the question is **unanswered**.) and **-1 mark** in all **other cases**.

Passage # 1 (Ques. 15 & 16)

Four capacitors of capacitance C , $2C$, $3C$ & $4C$ respectively are connected as shown in figure. Battery is ideal and all the connected wires have no resistance, capacitance or inductance. Initially the switch S is open. If at $t = 0$ switch S is closed

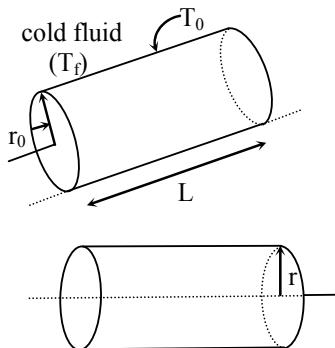


ਖਣਡ – *III* [ਪ੍ਰ.15 ਸੇ ਪ੍ਰ.18]

यहाँ 2 अनुच्छेद दिये गये हैं, प्रत्येक में 2 बहुविकल्पी प्रश्न हैं। (प्रश्न 15 से 18) प्रत्येक प्रश्न के चार विकल्प (A), (B), (C) तथा (D) हैं, जिनमें से केवल एक विकल्प सही हैं। OMR शीट में प्रश्न की प्रश्न संख्या के समक्ष अपना उत्तर अंकित कीजिये। प्रत्येक सही उत्तर के लिये +3 अंक दिये जाएंगे, 0 अंक यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है) तथा -1 अन्य सभी परिस्थितियों में।

गद्यांश # 1 (प्र. 15 एवं 16)

चार संधारित्रों की धारिता C , $2C$, $3C$ व $4C$ है इन्हें दर्शाये चित्रानुसार संयोजित किया गया है। बैटरी आदर्श है व सभी संयोजन तारें कोई प्रतिरोध, धारिता या प्रेरकत्व नहीं रखते। आरम्भिक रूप से स्विच S खुला था। यदि $t = 0$ पर स्विच S को बन्द किया गया है

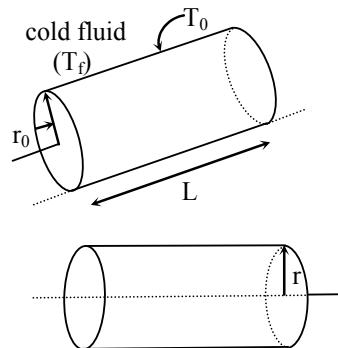

Space for rough work

Q.16 Heat generated in the switch after closing switch is

(A) $\frac{CE^2}{105}$ (B) $\frac{2CE^2}{105}$
 (C) $\frac{CE^2}{5}$ (D) $\frac{CE^2}{35}$

Passage # 2 (Ques. 17 & 18)

Heat generation may occur in a variety of radial geometries. Consider a long, solid cylinder as shown in the figure, which could represent a current-carrying wire or a fuel element in a nuclear reactor. For steady state conditions, the rate at which heat is generated within the cylinder must equal to the rate at which heat is convected from the surface of the cylinder to a moving fluid. This condition allows the surface temperature to be maintained at a fixed value of T_s . To determine the temperature distribution in the cylinder, we begin with energy conservation principle. Consider a cylindrical section of radius r .



Q.16 स्विच बन्द करने के पश्चात् स्विच में उत्पन्न ऊष्मा है-

(A) $\frac{CE^2}{105}$ (B) $\frac{2CE^2}{105}$
 (C) $\frac{CE^2}{5}$ (D) $\frac{CE^2}{35}$

गद्यांश # 2 (प्र. 17 एवं 18)

ऊष्मा उत्पादन भिन्न प्रकार की त्रिज्या ज्यामितीयों में हो सकता है। एक लम्बा ठोस बेलन, दर्शाये चित्रानुसार विचारित करें यह धारावाही तार या नाभिकीय संयंत्रा में ईधन अवयव को दर्शा सकता है। स्थायी अवस्था स्थिति के लिये बेलन के अन्दर ऊष्मा उत्पादन की दर को उस दर के अवश्य बराबर होना होगा जिस दर पर ऊष्मा, बेलन की सतह से गतिशील द्रव तक संवाहित (convected) होती है। वह प्रतिबन्ध सतह का ताप एक नियत मान T_s पर व्यवस्थित होना अनुमत करता है। बेलन में ताप वितरण निर्धारित करने के लिये हम ऊर्जा संरक्षण सिद्धान्त के साथ आरम्भ करते हैं। r त्रिज्या का एक बेलनाकार भाग विचारित करें।

Space for rough work

The rate at which energy is generated within the given volume is conducted radially outward.

$$\therefore q \pi r^2 \ell = - K 2\pi r \ell \frac{dT}{dr}, \text{ where } q \text{ is the energy}$$

generated per unit time per unit volume, K is the thermal conductivity and $\frac{dT}{dr}$, is the temperature gradient at radius r .

If q is constant

$$T(r) = - \frac{q}{4k} r^2 + C$$

$$\text{At } r = r_0, T(r_0) = T_S$$

$$\text{Therefore, } T(r) = \frac{q}{4k} r_0^2 \left(1 - \frac{r^2}{r_0^2} \right) + T_S$$

The rate of heat convected to the surrounding fluid (at temperature T_f) by the surface at temperature T_S is proportional to the temperature difference $(T_S - T_f)$ and the surface area in contact with the fluid.

$$\text{Rate of heat convection} = h (2\pi r_0 L) (T_S - T_f)$$

where h is a constant called heat convection coefficient.

By overall energy balance,

$$q(\pi r_0^2 L) = h (2\pi r_0 \ell) (T_S - T_f)$$

$$\Rightarrow T_S = T_f + \frac{qr_0}{2h}$$

दर जिस पर, दिये गये आयतन में उत्पन्न ऊष्मा त्रिज्या रूप से बाहर की ओर चालित होती है-

$\therefore q \pi r^2 \ell = - K 2\pi r \ell \frac{dT}{dr}$ हैं, जहाँ q प्रति इकाई समय में प्रति इकाई आयतन में उत्पादित ऊष्मा है। K तापीय चालकता व $\frac{dT}{dr}$, r त्रिज्या पर ताप प्रवणता है यदि q नियत है

$$T(r) = - \frac{q}{4k} r^2 + C$$

$$r = r_0 \text{ पर, } T(r_0) = T_S$$

$$\text{इसलिये } T(r) = \frac{q}{4k} r_0^2 \left(1 - \frac{r^2}{r_0^2} \right) + T_S$$

दर जिस पर उत्पादित ऊष्मा, परिवेशी द्रव (ताप T_f पर) को (सतह जो T_S ताप पर है द्वारा) स्थानान्तरित होती है यह तापान्तर $(T_S - T_f)$ व द्रव के साथ सम्पर्क सतह के क्षेत्रफल के समानुपाती होती है

ऊष्मा संवहन की दर = $h (2\pi r_0 L) (T_S - T_f)$
जहाँ h एक नियतांक है जैसे संवहन गुणांक कहते हैं कुल रूप ऊर्जा संतुलन द्वारा

$$q(\pi r_0^2 L) = h (2\pi r_0 \ell) (T_S - T_f)$$

$$\Rightarrow T_S = T_f + \frac{qr_0}{2h}$$

Space for rough work

Q.17 Consider a spherical nuclear fuel material of radius r_0 and rate of heat generation q (watt/m³). Find the temperature difference between the surface and surrounding fluid in steady state (h is the heat convection coefficient).

(A) $\frac{q r_0}{2h}$

B) $\frac{2}{3} \frac{q r_0}{h}$

(C) $\frac{q r_0}{3h}$

(D) $\frac{q r_0}{h}$

Q.18 In the above passage, the ratio of temperature gradient at $r = r_0/2$ and $r = r_0$ is

(A) 1

(B) $\frac{1}{4}$

(C) $\frac{1}{2}$

(D) $\frac{1}{8}$

Q.17 गोलाकार नाभिकीय ईंधन पदार्थ विचारित करें जिसकी त्रिज्या r_0 व ऊष्मा उत्पादन की दर q (watt/m³) है। स्थायी अवस्था स्थिति में सतह व परिवेशी द्रव के मध्य तापांतर ज्ञात कीजिये (h ऊष्मा संवहन गुणांक है)

(A) $\frac{q r_0}{2h}$

(B) $\frac{2}{3} \frac{q r_0}{h}$

(C) $\frac{q r_0}{3h}$

(D) $\frac{q r_0}{h}$

Q.18 उक्त गंद्याश में $r = r_0/2$ व $r = r_0$ पर ताप प्रवणताओं का अनुपात है-

(A) 1

(B) $\frac{1}{4}$

(C) $\frac{1}{2}$

(D) $\frac{1}{8}$

Space for rough work

CHEMISTRY

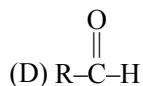
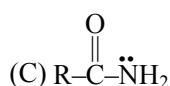
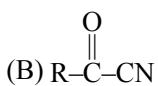
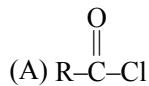
Section – I [Q.19 to Q.24]

This section contains **SIX (06)** questions. (Q.No. 19 to 24). Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s). For each question, choose the correct option(s) to answer the question. Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.





Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option .

Zero Marks : 0 If none of the option is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

Q.19 Which of the following compounds are more

O
||
reactive than $\text{R}-\text{C}-\text{OH}$ towards attack of
nucleophile ?

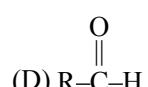
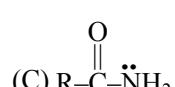
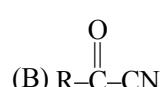
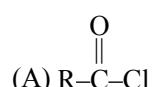
खण्ड – I [प्र.19 से प्र.24]

इस खण्ड में 6 बहुविकल्पी प्रश्न (प्र.19 से 24) तक हैं। प्रत्येक प्रश्न के सही उत्तर (उत्तरों) के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से एक या एक से अधिक विकल्प सही है (हैं)। प्रत्येक प्रश्न के लिए, प्रश्न का (के) उत्तर देने हेतु सही विकल्प (विकल्पों) को चुनें। प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न अंकन योजना के अनुसार होगा :

पूर्ण अंक : +4 यदि सभी सही विकल्प/विकल्पों को चुना गया है।

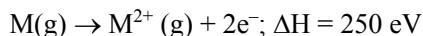
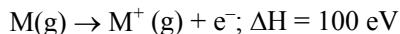
आंशिक अंक : +3 यदि चारों विकल्प सही है, परन्तु केवल तीन विकल्पों को चुना गया है।

आंशिक अंक : +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और चुने हुए दोनों विकल्प सही विकल्प हैं।





आंशिक अंक : +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प सही विकल्प है।

शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है। (अर्थात् प्रश्न अनुत्तरित है)।

ऋणात्मक अंक: -2 अन्य सभी परिस्थितियों में।



Q.19 नाभिकस्त्रेही के आक्रमण के प्रति निम्न में से कौनसा

O
||
यौगिक $\text{R}-\text{C}-\text{OH}$ से अधिक सक्रिय है ?

Space for rough work

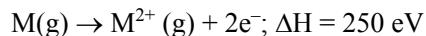
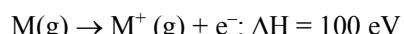
Q.20 Consider the following ionization steps :

Select correct statement (s) -

- (A) I.E.₁ of M(g) is 100 eV
- (B) I.E.₁ of M⁺(g) is 150 eV
- (C) I.E.₂ of M(g) is 250 eV
- (D) I.E.₂ of M(g) is 150 eV

Q.21 Select correct order between following compounds -

- (A) NH₃ > NF₃ : Bond angle
- (B) NH₃ > NF₃ : Dipole moment
- (C) NH₃ > NF₃ : % s character
- (D) NH₃ > NF₃ : Reactivity towards lewis acid



Q.22 Select the correct statement(s)

- (A) An adiabatic system can exchange energy with its surroundings
- (B) A thermodynamic property which is intensive is additive
- (C) Work done in free expansion for ideal gas is zero
- (D) For an isolated system entropy can never decrease

Q.23 Which of the following can produce H₂O₂ on hydrolysis ?

- (A) BaO₂
- (B) PbO₂
- (C) MnO₂
- (D) Na₂O₂

Q.20 निम्न आयनन पदों पर विचार कीजिए :

सही कथन है -

- (A) M(g) की प्रथम आयनन ऊर्जा 100 eV है
- (B) M⁺(g) की प्रथम आयनन ऊर्जा 150 eV है
- (C) M(g) की द्वितीय आयनन ऊर्जा 250 eV है
- (D) M(g) की द्वितीय आयनन ऊर्जा 150 eV है

Q.21 निम्न यौगिकों में से सही क्रम चुनिए -

- (A) NH₃ > NF₃ : बंध कोण
- (B) NH₃ > NF₃ : द्विधुरव आवूर्ण
- (C) NH₃ > NF₃ : % s गुण
- (D) NH₃ > NF₃ : लुइस अम्ल के प्रति क्रियाशीलत

Q.22 सही कथन चुनिये -

- (A) रूद्धोष्म तन्त्र इसके वातावरण के साथ ऊर्जा में आदान-प्रदान कर सकता है
- (B) ऊष्मा गतिकीय गुण जो मात्रा स्वतन्त्र होता है वह योगात्मक गुण है
- (C) आदर्श गैस के लिए मुक्त प्रसार में किया गया कार्य शून्य है
- (D) isolated तंत्रा के लिए एन्ट्रोपी में कभी भी कमी नहीं हो सकती है

Q.23 जल अपघटन पर निम्न में से कौनसा H₂O₂ उत्पन्न कर सकता है ?

- (A) BaO₂
- (B) PbO₂
- (C) MnO₂
- (D) Na₂O₂

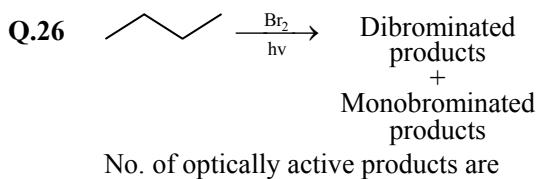
Space for rough work

Q.24 The correct statement/statements is/are :

(A) Distance between two octahedral void of a cubic close packing of atoms with radius r is $2r$

(B) The distance between two tetrahedral voids of a cubic close packing of atoms with radius r is $\sqrt{6}r$ at body diagonal axes

(C) The distance between tetrahedral and octahedral void is $\sqrt{\frac{3}{2}}r$, where r is radius of atom forming the close packing


(D) The distance between the surfaces of atoms FCC arrangement along an edge is $2(\sqrt{2}-1)r$

Section – II [Q.25 to Q.32]

This section contains **8** questions (Q.25 to 32). **+3** marks will be given for each **correct answer** and **0** marks for all other cases. For each question, enter the **correct numerical value** (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -30, 30.27, -127.30). Answer of this section are to be written on the Numeric Response Answer Sheet provided with the test booklet.

Q.25 Number of carbohydrates which show mutarotation are

(A) α -D(+) - glucopyranose
 (B) β -D(+) - gluco pyranose
 (C) α -D(-) fructo furanose
 (D) β -D(-) fructo furanose
 (E) Sucrose
 (F) Maltose
 (G) Lactose

No. of optically active products are

Q.27 A solution containing 28 g phosphorous (P_n) in 315 g CS_2 (boiling point 46.3°C) boils at 47.98°C , K_b for CS_2 is $2.34 \text{ k mol}^{-1} \text{ kg}$. Calculate value of n . Assume its complete association.

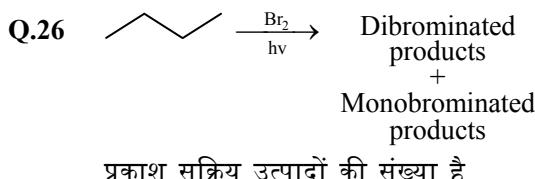
Q.24 सही कथन है :

(A) r त्रिज्या के परमाणुओं में घन निबिड संकुल में दो अष्टफलकीय रिक्ती के मध्य दूरी $2r$ है।

(B) r त्रिज्या के परमाणु की घनीय निबिड संकुलन व्यवस्था में काय् विकर्ण पर उपस्थित दो चतुष्फलकीय गर्तों के मध्य दूरी $\sqrt{6}r$ हैं

(C) चतुष्फलकीय तथा अष्टफलकीय रिक्ती के मध्य दूरी $\sqrt{\frac{3}{2}}r$ है, जहाँ परमाणु की त्रिज्या r है, जो निबिड संकुलन करते हैं।

(D) FCC व्यवस्था में सिरे पर उपस्थित परमाणुओं की सतह के मध्य दूरी $2(\sqrt{2}-1)r$


खण्ड – II [प्र.25 से प्र.32]

इस खण्ड में **8** (प्र.25 से 32) प्रश्न हैं। प्रत्येक सही उत्तर के लिये **+3** अंक दिये जाएंगे तथा **0** अंक अन्य सभी परिस्थितियों में। प्रत्येक प्रश्न के उत्तर के संख्यात्मक मान (दशमलव अंकन में, दशमलव के द्वितीय स्थान तक पूर्णांक (rounded-off) कर) दीजिये, उदा: **6.25, 7.00, -0.33, -30, 30.27, -127.30**.

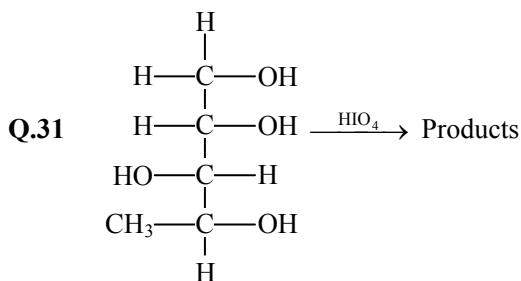
इस खण्ड के उत्तर, प्रश्न पुस्तिका में दिये गये गणनात्मक उत्तर वाली शीट में ही भरियें।

Q.25 कार्बोहाइड्रेट की संख्या जो म्यूटारोटेशन (mutarotation) प्रदर्शित करती है

(A) α -D(+) - ग्लाइकोपाइरेनोस
 (B) β -D(+) - ग्लाइकोपाइरेनोस
 (C) α -D(-) फ्रूक्टो फुरेनोस
 (D) β -D(-) फ्रूक्टो फुरेनोस
 (E) सुक्रोस
 (F) माल्टोस
 (G) लेक्टॉस

प्रकाश सक्रिय उत्पादों की संख्या है

Q.27 एक विलयन 315 g CS_2 (क्रथनांक बिन्दु 46.3°C) में 28 g फॉस्फोरस (P_n) मिलाया जाता है जो 47.98°C पर उबलता है, CS_2 के लिए K_b , $2.34 \text{ k mol}^{-1} \text{ kg}$ है। n का मान ज्ञात कीजिए।


Space for rough work

Q.28 60 ml of mixture of equal volumes of Cl_2 and an oxide of chlorine i.e. Cl_2O_n was heated and then cooled back to the original temperature. The resulting gas mixture was found to have volume of 75 ml. On treatment with KOH solution the volume contracted to 15 ml. Assume that all measurements are made at the same pressure and temperature. Deduce value of n in Cl_2O_n . The oxide of Cl_2 on heating decomposes quantitatively to O_2 and Cl_2 .

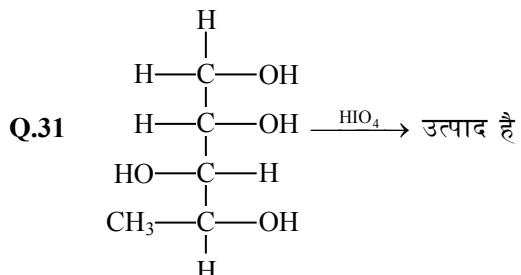
Q.29 At 298 K If ΔG_f° of HCl is 1.72 kJ/mol, then calculate k_p for the following reversible reaction;

$$2\text{HCl}(g) \rightleftharpoons \text{H}_2(g) + \text{Cl}_2(g)$$

 (use : at 298 K : 2.303 RT = 5700 J/mol and $\log 2 = 0.30$)

Q.30 How many of the following are co-polymer
 Nylon-6, Buna-N, Daeron, Buna-S, Teflon, PHBV

How many different type of products in the above reaction can give Tollen's test.


Q.32 If four atoms of same radius are placed at the alternate corner of a cube touching each other, then the length of body diagonal of the cube is equal $\sqrt{x} \times R$. Find value of x if R is radius of atom.

Q.28 Cl_2 तथा क्लोरीन के ऑक्साइड Cl_2O_n को गर्म किया जाता है तथा पुनः प्रांरम्भिक तापमान तक ठण्डा किया जाता है, परिणामी गैसीय मिश्रण का आयतन 75 ml है। KOH से अभिक्रिया के पश्चात् आयतन घटकर 15 ml हो जाता है। यदि सभी मान निश्चित ताप व दाब पर ज्ञात करते हैं तो Cl_2O_n में n का मान है ? यदि Cl_2 का ऑक्साइड गर्म करने पर O_2 व Cl_2 में विश्वित होता है।

Q.29 298 K पर HCl का ΔG_f° , 1.72 kJ/mol है, तो निम्न उत्क्रमणीय अभिक्रिया के लिए k_p का मान ज्ञात कीजिए;

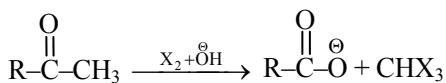
$$2\text{HCl}(g) \rightleftharpoons \text{H}_2(g) + \text{Cl}_2(g)$$

 (use : at 298 K : 2.303 RT = 5700 J/mol तथा $\log 2 = 0.30$)

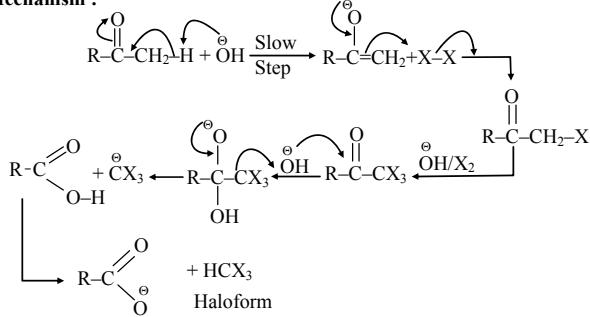
Q.30 निम्न में से कितने सह-बहुलक हैं
 नायलॉन-6, बुना-N, डेरॉन, बुना-S, टेफ्लॉन, PHBV

उपरोक्त अभिक्रिया में कितने विभिन्न प्रकार के उत्पाद टॉलेन परीक्षण दे सकते हैं।

Q.32 यदि समान त्रिज्या के चार परमाणु घन के एकान्तर कोनों पर एक दूसरे को छुते हुए रखे गये हैं, तब घन के काय् विकर्ण की लम्बाई $\sqrt{x} \times R$ के बराबर है। यदि R परमाणु की त्रिज्या है, x का मान ज्ञात कीजिए।


Space for rough work

Section – III [Q.33 to Q.36]

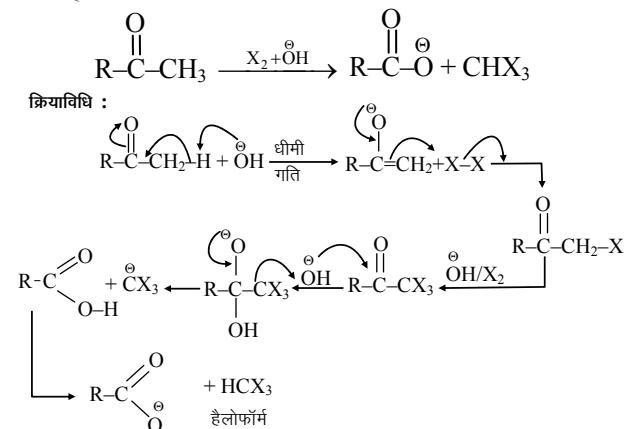

There are 2 paragraphs; each has 2 multiple choice questions (Questions 33 to 36). Each question has Four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. Mark your response in OMR sheet against the question number of that question. **+3 marks** will be given for each **correct answer**, **0 mark** If none of the options is chosen (i.e. the question is **unanswered**.) and **-1 mark** in all **other cases**.

Passage # 1 (Ques. 33 & 34)

Compound having $\text{--C}=\text{O}-\text{CH}_3$ group reacts rapidly with halogen in presence of a base to form haloform. The reaction is known as haloform

Mechanism :

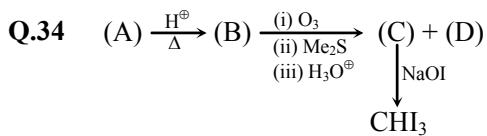
Q.33 Which of the following will yield iodoform on reaction with $\text{I}_2 + \text{NaOH}$?

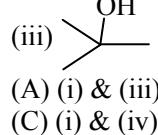
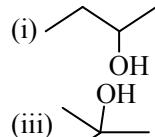

(i) $\text{CH}_2\text{--CH}(\text{OH})\text{--Cl--C}(=\text{O})\text{--OH}$	(ii)
(iii) $\text{Et--O--C}(=\text{O})\text{--Me}$	(iv) $\text{CCl}_3\text{--C}(=\text{O})\text{--H}$
(A) (i) & (ii)	(B) (ii) & (iii)
(C) (i) & (iv)	(D) (ii) & (iv)

खण्ड – III [प्र.33 से प्र.36]

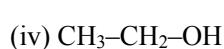
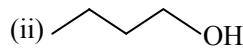
यहाँ 2 अनुच्छेद दिये गये हैं, प्रत्येक में 2 बहुविकल्पी प्रश्न हैं। (प्रश्न 33 से 36) प्रत्येक प्रश्न के चार विकल्प (A), (B), (C) तथा (D) हैं, जिनमें से केवल एक विकल्प सही है। OMR शीट में प्रश्न की प्रश्न संख्या के समान अपना उत्तर अंकित कीजिये। प्रत्येक सही उत्तर के लिये +3 अंक दिये जाएंगे, 0 अंक यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है) तथा -1 अन्य सभी परिस्थितियों में।

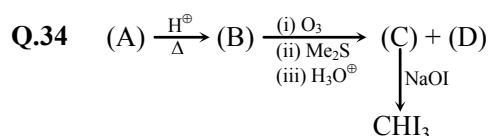
गद्यांश # 1 (प्र. 33 एवं 34)

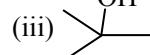

यौगिक जो $\text{--C}=\text{O}-\text{CH}_3$ समुह रखते हैं वे एक क्षार की उपस्थिति में हेलोफॉर्म के निर्माण के लिए हेलोजन के साथ तीव्रता से क्रिया करते हैं। यह अभिक्रिया हेलोफॉर्म के नाम से जानी जाती है।



Q.33 निम्न से कौनसा $\text{I}_2 + \text{NaOH}$ के साथ अभिक्रिया पर आयोडोफॉर्म देगा ?

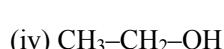
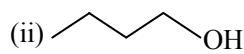
(i) $\text{CH}_2\text{--CH}(\text{OH})\text{--Cl--C}(=\text{O})\text{--OH}$	(ii)
(iii) $\text{Et--O--C}(=\text{O})\text{--Me}$	(iv) $\text{CCl}_3\text{--C}(=\text{O})\text{--H}$
(A) (i) एवं (ii)	(B) (ii) एवं (iii)
(C) (i) एवं (iv)	(D) (ii) एवं (iv)



Space for rough work


Possible (A) will be



(A) (i) & (iii)
 (C) (i) & (iv)



(B) (ii) & (iii)
 (D) (ii) & (iv)

सम्भावित (A) होगा -

(A) (i) एवं (iii)
 (C) (i) एवं (iv)

(B) (ii) एवं (iii)
 (D) (ii) एवं (iv)

Passage # 2 (Ques. 35 & 36)

When triatomic gas X_3 reacts with excess of potassium iodide solution buffered with a borate buffer ($pH = 9.2$) diatomic product Y_2 is liberated which can be titrated against a standard solution of sodium thiosulphate. This is a quantitative method for the estimation of X_3 gas in the mixture of X_3 and X_2 of some atom X.

Q.35 Gases X_2 and Y_2 can be -

(A) $X_2 = Cl_2$, $Y_2 = H_2$
 (B) $X_2 = O_2$, $Y_2 = I_2$
 (C) $X_2 = Cl_2$, $Y_2 = O_2$
 (D) $X_2 = I_2$, $Y_2 = Cl_2$

Q.36 Select the incorrect statement ?

(A) Y_2 produces blue colour with starch
 (B) X_2 is thermodynamically more stable as compared to X_3
 (C) X_3 upon cooling condenses to blue liquid and further cooling results in violet black solid
 (D) X_2 and X_3 are both colourless and odourless gases

गद्यांश # 2 (प्र. 35 एवं 36)

जब एक X_3 गैस, KI के साथ बोरेट बफर की उपस्थिति ($pH = 9.2$) में अभिकृत करती है तो द्विपरमाणिक उत्पाद Y_2 मुक्त होता है। जिसे सोडियम थायो सल्फेट के साथ अनुमापित करते हैं। यह अभिक्रिया X_3 का X_3 व X_2 के मिश्रण में मात्रात्मक विश्लेषण में प्रयुक्त होती है।

Q.35 गैसे X_2 तथा Y_2 हो सकती है -

(A) $X_2 = Cl_2$, $Y_2 = H_2$
 (B) $X_2 = O_2$, $Y_2 = I_2$
 (C) $X_2 = Cl_2$, $Y_2 = O_2$
 (D) $X_2 = I_2$, $Y_2 = Cl_2$

Q.36 गलत कथन चुनिए ?

(A) Y_2 स्टार्च के साथ नीला रंग उत्पन्न करता है
 (B) X_2 उष्मागतिकीय रूप से X_3 की तुलना में अधिक स्थाई है
 (C) X_3 ठंडा करने पर नीले द्रव में संघनित होता है तथा आगे और ठंडा करने पर बैंगनी काला ठोस प्राप्त होता है
 (D) X_2 तथा X_3 दोनों रंगहीन तथा गंधहीन गैसे हैं

Space for rough work

MATHEMATICS

Section – I [Q.37 to Q.42]

This section contains **SIX (06)** questions. (Q.No. 37 to 42). Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s). For each question, choose the correct option(s) to answer the question. Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If none of the option is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

Q.37 If solution of the equation

$$\frac{\sqrt{6}-\sqrt{2}}{\sin x} + \frac{\sqrt{2}+\sqrt{6}}{\cos x} = 8 \text{ in } \left(0, \frac{\pi}{2}\right) \text{ is } \frac{m\pi}{n}$$

(where m and n are coprime numbers) then $(m + n)$ can be

(A) 23	(B) 39
(C) 47	(D) 13

खण्ड – I [प्र.37 से प्र.42]

इस खण्ड में 6 बहुविकल्पी प्रश्न (प्र.37 से 42) तक हैं। प्रत्येक प्रश्न के सही उत्तर (उत्तरों) के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से एक या एक से अधिक विकल्प सही है (हैं)। प्रत्येक प्रश्न के लिए, प्रश्न का (के) उत्तर देने हेतु सही विकल्प (विकल्पों) को चुनें। प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न अंकन योजना के अनुसार होगा :

पूर्ण अंक : +4 यदि सभी सही विकल्प/विकल्पों को चुना गया है।

आंशिक अंक : +3 यदि चारों विकल्प सही है, परन्तु केवल तीन विकल्पों को चुना गया है।

आंशिक अंक : +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और चुने हुए दोनों विकल्प सही विकल्प हैं।

आंशिक अंक : +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प सही विकल्प है।

शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है। (अर्थात् प्रश्न अनुत्तरित है)।

ऋणात्मक अंक: -2 अन्य सभी परिस्थितियों में।

Q.37 यदि $\left(0, \frac{\pi}{2}\right)$ में समीकरण $\frac{\sqrt{6}-\sqrt{2}}{\sin x} + \frac{\sqrt{2}+\sqrt{6}}{\cos x} = 8$

का हल $\frac{m\pi}{n}$ है (जहाँ m एवं n सहअभाज्य संख्याएँ

हैं) तब $(m + n)$ हो सकता है

(A) 23	(B) 39
(C) 47	(D) 13

Space for rough work

Q.38 From the point of intersection of the circle $S: x^2 + y^2 - 4x + 6y + 13 = 0$ and the line $L: 2x + 5y + 11 = 0$ two tangents are drawn to the circle $x^2 + y^2 = \frac{121}{29}$, whose slopes are m_1 and m_2 , then -

(A) $m_1 + m_2 = \frac{348}{5}$ (B) $m_1 m_2 = 28$
 (C) $m_1 + m_2 = \frac{-87}{35}$ (D) $m_1 m_2 = -28$

Q.39 Let $f: (0, \infty) \rightarrow (-\infty, \infty)$ be defined as $f(x) = e^x + \ln x$ and $g = f^{-1}$, then

(A) $g'(e) = \frac{1-e}{(1+e)^3}$
 (B) $g''(e) = \frac{1-e}{(e+1)^3}$
 (C) $g'(e) = e + 1$
 (D) $g'(e) = \frac{1}{e+1}$

Q.40 Let S be the set of real values of parameter λ for which the function $f(x) = 2x^3 - 3(2 + \lambda)x^2 + 12\lambda x$ has exactly one local maxima and exactly one local minima. Then the subset of S is/are -

(A) $(5, \infty)$ (B) $(-6, 8)$
 (C) $(3, 14)$ (D) $(-\infty, -3)$

Q.41 Let $S_n = (2+2) + (2^2+5) + (2^3+10) + (2^4+17) + \dots$ up to n brackets. If $S_n = 2^{n+A} + Bn^3 + Cn^2 + Dn + E \forall n \in \mathbb{N}$ (where A, B, C, D, E are constant), then which of the following is/are true ?

(A) $A = 1$ (B) $B = \frac{1}{6}$
 (C) $D = \frac{7}{6}$ (D) $E = -2$

Q.38 वृत्त $S: x^2 + y^2 - 4x + 6y + 13 = 0$ तथा रेखा $L: 2x + 5y + 11 = 0$ के प्रतिच्छेदन बिन्दु से वृत्त $x^2 + y^2 = \frac{121}{29}$ पर दो स्पर्शरेखाएं खींची जाती हैं जिनकी ढालें m_1 तथा m_2 हैं, तब -

(A) $m_1 + m_2 = \frac{348}{5}$ (B) $m_1 m_2 = 28$
 (C) $m_1 + m_2 = \frac{-87}{35}$ (D) $m_1 m_2 = -28$

Q.39 माना $f: (0, \infty) \rightarrow (-\infty, \infty)$ इस प्रकार परिभाषित है कि $f(x) = e^x + \ln x$ तथा $g = f^{-1}$ है, तब

(A) $g'(e) = \frac{1-e}{(1+e)^3}$
 (B) $g''(e) = \frac{1-e}{(e+1)^3}$
 (C) $g'(e) = e + 1$
 (D) $g'(e) = \frac{1}{e+1}$

Q.40 माना S प्राचल λ के वास्तविक मानों का समुच्चय है जिनके लिए फलन $f(x) = 2x^3 - 3(2 + \lambda)x^2 + 12\lambda x$ ठीक एक स्थानीय उच्चिष्ठ तथा ठीक एक स्थानीय निम्निष्ठ रखता है, तब S का/के उपसमुच्चय हैं -

(A) $(5, \infty)$ (B) $(-6, 8)$
 (C) $(3, 14)$ (D) $(-\infty, -3)$

Q.41 माना $S_n = (2+2) + (2^2+5) + (2^3+10) + (2^4+17) + \dots$ n कोष्ठकों तक। यदि $S_n = 2^{n+A} + Bn^3 + Cn^2 + Dn + E \forall n \in \mathbb{N}$ (जहाँ A, B, C, D, E अचर हैं), तब निम्न में से कौनसा/कौनसे सत्य है ?

(A) $A = 1$ (B) $B = \frac{1}{6}$
 (C) $D = \frac{7}{6}$ (D) $E = -2$

Space for rough work

Q.42 Which of the following is true ?

(A) $\cos^{-1} \sqrt{\frac{1+x}{2}} = \sin^{-1} \sqrt{\frac{1-x}{2}} \forall x \in [-1, 1]$

(B) $\sin^{-1} \sqrt{\frac{1-x}{2}} = \frac{1}{2} \cos^{-1} x \forall x \in [-1, 1]$

(C) $\cos^{-1} \sqrt{\frac{1+x}{2}} = 2 \cos^{-1} x \forall x \in [-1, 1]$

(D) $\sin^{-1} \sqrt{\frac{1-x}{2}} = \frac{1}{2} \sin^{-1} x \forall x \in [-1, 1]$

Section – II [Q.43 to Q.50]

This section contains 8 questions (Q.43 to 50). +3 marks will be given for each correct answer and 0 marks for all other cases. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -30, 30.27, -127.30). Answer of this section are to be written on the Numeric Response Answer Sheet provided with the test booklet.

Q.43 ABCD and PQRS are two variable rectangles such that P, Q, R and S lie on AB, BC, CD and DA respectively and perimeter ' ℓ ' of PQRS is constant. If maximum area of ABCD is 32, then $\ell/2$ is equal to

Q.44 If f be a function such that $f : R \rightarrow R$, $f(x) = \frac{3x^2 + mx + n}{x^2 + 1}$ and the range of $f(x)$ is $[-4, 3]$ then $|m + n|$ is

Q.45 If the sum of all the solutions of the equation $3\cot^2\theta + 10\cot\theta + 3 = 0$ in $[0, 2\pi]$ is $\frac{k\pi}{2}$ where $k \in I$, then the value of $\frac{k}{10}$ is

Q.42 निम्न में से कौनसा सत्य है ?

(A) $\cos^{-1} \sqrt{\frac{1+x}{2}} = \sin^{-1} \sqrt{\frac{1-x}{2}} \forall x \in [-1, 1]$

(B) $\sin^{-1} \sqrt{\frac{1-x}{2}} = \frac{1}{2} \cos^{-1} x \forall x \in [-1, 1]$

(C) $\cos^{-1} \sqrt{\frac{1+x}{2}} = 2 \cos^{-1} x \forall x \in [-1, 1]$

(D) $\sin^{-1} \sqrt{\frac{1-x}{2}} = \frac{1}{2} \sin^{-1} x \forall x \in [-1, 1]$

खण्ड – II [प्र.43 से प्र.50]

इस खण्ड में 8 (प्र.43 से 50) प्रश्न हैं। प्रत्येक सही उत्तर के लिये +3 अंक दिये जाएंगे तथा 0 अंक अन्य सभी परिस्थितियों में। प्रत्येक प्रश्न के उत्तर के संख्यात्मक मान (दशमलव अंकन में, दशमलव के द्वितीय स्थान तक पूर्णांक (rounded-off) कर) दीजिये, उदा: 6.25, 7.00, -0.33, -30, 30.27, -127.30. इस खण्ड के उत्तर, प्रश्न पुस्तिका में दिये गये गणनात्मक उत्तर वाली शीट में ही भरियें।

Q.43 ABCD तथा PQRS दो चर आयत इस प्रकार है कि P, Q, R एवं S क्रमशः AB, BC, CD एवं DA पर स्थित हैं तथा PQRS का परिमाप ' ℓ ' नियत है। यदि ABCD का अधिकतम क्षेत्रफल 32 है, तब $\ell/2$ का मान होगा।

Q.44 यदि फलन f इस प्रकार है कि $f : R \rightarrow R$, $f(x) = \frac{3x^2 + mx + n}{x^2 + 1}$ है तथा $f(x)$ का परिसर $[-4, 3]$ है, तब $|m + n|$ का मान होगा

Q.45 यदि $[0, 2\pi]$ में समीकरण $3\cot^2\theta + 10\cot\theta + 3 = 0$ के सभी हलों का योग $\frac{k\pi}{2}$ है, जहाँ $k \in I$ है, तब $\frac{k}{10}$ का मान होगा

Space for rough work

Q.46 A bag contains 5 balls of different colour (one of which is white). Three persons A, B and C whose probability of speaking truth are $\frac{1}{2}$, $\frac{2}{3}$

and $\frac{3}{4}$ respectively assert that a white ball has been drawn from the bag. If probability of truth of their assertion is p/q then least value of $q - p$ is

Q.47 Let 'P' be an integer for which both roots of the quadratic equation $x^2 + 2(P-3)x + 9 = 0$ lies in $(-6, 1)$. If $2, g_1, g_2, \dots, g_{19}, g_{20}, P$ are in G.P., then the value of $\frac{g_4 \cdot g_{17}}{4}$ is

Q.48 A differentiable function f satisfying a relation $f(x + y) = f(x) + f(y) + 2xy (x + y) - \frac{1}{3} \forall x, y \in \mathbb{R}$ and $\lim_{h \rightarrow 0} \frac{3f(h) - 1}{6h} = \frac{2}{3}$. Then the value of definite integral $\int_{-3}^3 f(x)dx$ is

Q.49 Given a right circular cone of volume v_1 . If v_2 be the volume of the largest right circular cylinder that can be inscribed in the given cone, then ratio $4v_1 : v_2$ is equal to

Q.50 The distance between the line $x = 2 + t, y = 1 + t, z = -\frac{1}{2} - \frac{t}{2}$ and the plane $\vec{r} \cdot (\hat{i} + 2\hat{j} + 6\hat{k}) = 10$, is $\frac{3k}{\sqrt{41}}$. Then the value of k is

Q.46 एक थैले में अलग अलग रंग की 5 गेन्डे हैं (जिनमें से एक सफेद है) तीन व्यक्ति A, B एवं C जिनके सत्य बोलने की प्रायिकता क्रमशः $\frac{1}{2}, \frac{2}{3}$ एवं $\frac{3}{4}$ है, कहते हैं कि थैले से एक सफेद गेन्ड निकलेगी। यदि उनके कथन के सत्य होने की प्रायिकता p/q है, तब $q - p$ का न्यूनतम मान होगा।

Q.47 माना 'P' एक पूर्णांक है जिसके लिए द्विघात समीकरण $x^2 + 2(P-3)x + 9 = 0$ के दोनों मूल, $(-6, 1)$ में स्थित है। यदि $2, g_1, g_2, \dots, g_{19}, g_{20}, P$ गु. श्रे. में है, तब $\frac{g_4 \cdot g_{17}}{4}$ का मान होगा

Q.48 एक अवकलनीय फलन f सम्बन्धित $f(x + y) = f(x) + f(y) + 2xy (x + y) - \frac{1}{3} \forall x, y \in \mathbb{R}$ को सन्तुष्ट करता है तथा $\lim_{h \rightarrow 0} \frac{3f(h) - 1}{6h} = \frac{2}{3}$ है, तब निश्चित समाकलन $\int_{-3}^3 f(x)dx$ का मान होगा

Q.49 दिया गया है कि एक लम्ब वृत्तीय शंकु का आयतन v_1 है। यदि v_2 बड़े लम्बवृत्तीय बेलन का आयतन है जो दिये गये शंकु के अन्तर्गत बनाया गया है तो अनुपात $4v_1 : v_2$ बराबर होगा.....

Q.50 रेखा $x = 2 + t, y = 1 + t, z = -\frac{1}{2} - \frac{t}{2}$ तथा समतल $\vec{r} \cdot (\hat{i} + 2\hat{j} + 6\hat{k}) = 10$ के मध्य दूरी $\frac{3k}{\sqrt{41}}$ है, तब k का मान होगा

Space for rough work

Section – III [Q.51 to Q.54]

There are **2 paragraphs**; each has **2 multiple choice questions (Questions 51 to 54)**. Each question has Four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. Mark your response in OMR sheet against the question number of that question. **+3 marks** will be given for each **correct answer**, **0 mark** If none of the options is chosen (i.e. the question is **unanswered**) and **-1 mark** in all **other cases**.

Passage # 1 (Ques. 51 & 52)

A train consists of n carriages and there are p passengers. Each one of the p passengers randomly selects the carriage in which he will ride.

Q.51 If $n = 4$ and $p = 6$, then the probability that there will be at least one passenger in each carriage is

- (A) $\frac{195}{512}$
- (B) $\frac{1564}{4096}$
- (C) $\frac{^6C_4 4! 4^2}{4^6}$
- (D) $\frac{^5C_3 4!}{4^6}$

Q.52 $\binom{n}{1} 1^p - \binom{n}{2} 2^p + \binom{n}{3} 3^p - \dots + (-1)^{n-1} \binom{n}{n} n^p$ is equal to (where $\binom{n}{r} = {}^n C_r$)

- (A) $(-1)^{n-1} n!$, if $p < n$
- (B) 0, if $p = n$
- (C) $n!$, if $p = n$
- (D) $(-1)^{n-1} n!$, if $p = n$

खण्ड – III [प्र.51 से प्र.54]

यहाँ **2** अनुच्छेद दिये गये हैं, प्रत्येक में **2** बहुविकल्पी प्रश्न हैं। (प्रश्न 51 से 54) प्रत्येक प्रश्न के चार विकल्प (A), (B), (C) तथा (D) हैं, जिनमें से केवल एक विकल्प सही है। OMR शीट में प्रश्न की प्रश्न संख्या के समान अपना उत्तर अंकित कीजिये। प्रत्येक सही उत्तर के लिये **+3** अंक दिये जाएंगे, **0** अंक यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है) तथा **-1** अन्य सभी परिस्थितियों में।

गद्यांश # 1 (प्र. 51 एवं 52)

एक ट्रेन के n डिब्बे हैं तथा वहाँ p यात्री हैं। p यात्रियों में से प्रत्येक यात्री यादृच्छया डिब्बा चुनता है जिसमें वह सवार होगा।

Q.51 यदि $n = 4$ तथा $p = 6$ है, तब प्रत्येक डिब्बे में कम से कम एक यात्री होने की प्रायिकता होगी -

- (A) $\frac{195}{512}$
- (B) $\frac{1564}{4096}$
- (C) $\frac{^6C_4 4! 4^2}{4^6}$
- (D) $\frac{^5C_3 4!}{4^6}$

Q.52 $\binom{n}{1} 1^p - \binom{n}{2} 2^p + \binom{n}{3} 3^p - \dots + (-1)^{n-1} \binom{n}{n} n^p$ का मान होगा (जहाँ $\binom{n}{r} = {}^n C_r$)

- (A) $(-1)^{n-1} n!$, यदि $p < n$
- (B) 0, यदि $p = n$
- (C) $n!$, यदि $p = n$
- (D) $(-1)^{n-1} n!$, if $p = n$

Space for rough work

Passage # 2 (Ques. 53 & 54)

If $\lim_{x \rightarrow \infty} \sum_{r=1}^{r_2} \frac{1}{n} f\left(\frac{r}{n}\right) = \int_a^b f(x) dx$, where $a = \lim_{x \rightarrow \infty} \frac{r_1}{n}$ and

$$b = \lim_{x \rightarrow \infty} \frac{r_2}{n}$$

Q.53 $\lim_{n \rightarrow \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{6n} \right) =$

- (A) $\log 4$
- (B) $\log 5$
- (C) $\log 6$
- (D) $3 \log 2$

Q.54 $\lim_{n \rightarrow \infty} \sum_{r=1}^n \frac{n+r}{n^2+r^2} =$

- (A) $\frac{\pi}{4} + \frac{1}{2} \ln 2$
- (B) $\frac{\pi}{4} - \frac{1}{2} \ln 2$
- (C) $\frac{\pi}{4} + \ln 4$
- (D) $\frac{\pi}{4} - \ln 4$

गद्यांश # 2 (प्र. 53 एवं 54)

यदि $\lim_{x \rightarrow \infty} \sum_{r=1}^{r_2} \frac{1}{n} f\left(\frac{r}{n}\right) = \int_a^b f(x) dx$, है, जहाँ $a = \lim_{x \rightarrow \infty} \frac{r_1}{n}$ तथा

$$b = \lim_{x \rightarrow \infty} \frac{r_2}{n}$$

Q.53 $\lim_{n \rightarrow \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{6n} \right) =$

- (A) $\log 4$
- (B) $\log 5$
- (C) $\log 6$
- (D) $3 \log 2$

Q.54 $\lim_{n \rightarrow \infty} \sum_{r=1}^n \frac{n+r}{n^2+r^2} =$

- (A) $\frac{\pi}{4} + \frac{1}{2} \ln 2$
- (B) $\frac{\pi}{4} - \frac{1}{2} \ln 2$
- (C) $\frac{\pi}{4} + \ln 4$
- (D) $\frac{\pi}{4} - \ln 4$

SYLLABUS

भौतिक विज्ञान	: Full Syllabus
रसायन विज्ञान	: Full Syllabus
गणित	: Full Syllabus

IMPORTANT INSTRUCTIONS

A. सामान्य :

1. कृपया प्रत्येक प्रश्न के लिए दिए गए निर्देशों को सावधानीपूर्वक पढ़िये तथा सम्बन्धित विषयों में उत्तर-पुस्तिका पर प्रश्न संख्या के समक्ष सही उत्तर चिह्नित कीजिए।
2. उत्तर के लिए, OMR अलग से दी जा रही है।
3. परिवीक्षकों द्वारा निर्देश दिये जाने से पूर्व प्रश्न-पत्र पुस्तिका की सील को नहीं खोलें।

B. अंकन पद्धति:

इस प्रश्नपत्र में प्रत्येक विषय में निम्न प्रकार के प्रश्न हैं:-

खण्ड- I

4. प्रत्येक प्रश्न के सही उत्तर (उत्तरों) के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से एक या एक से अधिक विकल्प सही हैं। प्रत्येक प्रश्न के लिए, प्रश्न का (के) उत्तर देने हेतु सही विकल्प (विकल्पों) को चुनें।

प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न अंकन योजना के अनुसार होगा :

पूर्ण अंक	: +4 यदि चारों विकल्प सही हैं परन्तु केवल तीन विकल्पों को चुना गया है।
आंशिक अंक	: +3 यदि चारों विकल्प सही परन्तु केवल तीन विकल्पों को चुना गया है।
आंशिक अंक	: +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और चुने हुए दोनों विकल्प सही विकल्प हैं।
आंशिक अंक	: +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प सही विकल्प है।
शून्य अंक	: 0 यदि किसी भी विकल्प को नहीं चुना गया है। (अर्थात् प्रश्न अनुत्तरित है)।
ऋणात्मक अंक	: -2 अन्य सभी परिस्थितियों में।

खण्ड- II

5. गणनात्मक प्रकार के प्रश्न हैं। प्रत्येक सही उत्तर के लिए +3 अंक दिए जाएंगे तथा 0 अंक अन्य सभी परिस्थितियों में। इस खण्ड में प्रत्येक प्रश्न के उत्तर के संख्यात्मक मान दशमलव अंकन में, दशमलव के द्वितीय स्थान तक पूर्णांक (**truncated/rounded-off**) दीजिये, उदाहरणतः **(6.25, 7.00, -0.33, -30, 30.27, -127.30)**

6. उत्तर को स्पष्ट तथा स्वच्छ हस्तलेखा में ही लिखें।

खण्ड- III

7. गद्यांश पर आधारित बहुविकल्पी प्रकार के प्रश्न जिनमें से एक विकल्प सही है। प्रत्येक सही उत्तर के लिए +3 अंक दिए जायेंगे, 0 अंक यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है) तथा अन्य सभी परिस्थितियों के लिए -1 अंक घटाया जायेगा।

C. OMR की पूर्ति :

8. OMR शीट के ब्लॉकों में अपना नाम, अनुक्रमांक, बैच, कोर्स तथा परीक्षा का केन्द्र भरें तथा गोलों को उपयुक्त रूप से काला करें।
9. गोलों को काला करने के लिए केवल HB पेन्सिल या नीले/काले पेन (जेल पेन प्रयोग न करें) का प्रयोग करें।

For example if only 'A' choice is correct then, the correct method for filling the bubbles is :

A	B	C	D
●	○	○	○

For example if only 'A & C' choices are correct then, the correct method for filling the bubbles is :

A	B	C	D
●	○	●	○

the wrong method for filling the bubble are :

○	⊗	◎	◐
---	---	---	---

The answer of the questions in wrong or any other manner will be treated as wrong.

JEE (Main & Advanced)

PTS

SAMPLE PAPER Physics, Chemistry & Mathematics

SOLUTIONS

PTS/26/MJ-12/PCM-1 & 2

PAPER-1

PHYSICS

Q.No.	1	2	3	4	5	6	7	8	9	10
Ans.	A,B	C,D	A,C	B	A	B	6.00	0.00	3.00	1.00
Q.No.	11	12	13	14	15	16	17	18		
Ans.	7.00	5.00	8.00	1.00	C	A	C	C		

CHEMISTRY

Q.No.	19	20	21	22	23	24	25	26	27	28
Ans.	A,B,D	A,B,D	A,B,D	A,C,D	A,D	A,B,C,D	6.00	8.00	4.00	1.00
Q.No.	29	30	31	32	33	34	35	36		
Ans.	4.00	4.00	3.00	6.00	B	A	B	D		

MATHEMATICS

Q.No.	37	38	39	40	41	42	43	44	45	46
Ans.	C,D	A,D	B,D	A,C,D	A,C,D	A,B	8.00	4.00	1	1.00
Q.No.	47	48	49	50	51	52	53	54		
Ans.	3.00	2.00	9.00	3.00	A	D	C	A		

PHYSICS

Section - I

1.[A,B] $\frac{V^3}{T^2} = \text{const}$ & $PV = nRT$

i.e. $PV^{\frac{-1}{2}} = \text{const}$

i.e. Polytrophic Process $PV^x = \text{const}$

where $x = -\frac{1}{2}$

$$W = \frac{P_2 V_2 - P_1 V_1}{1-x} = \frac{nR \Delta T}{1-x} = 200R$$

$$C = C_V + \frac{R}{1-x} = \frac{13}{6}R$$

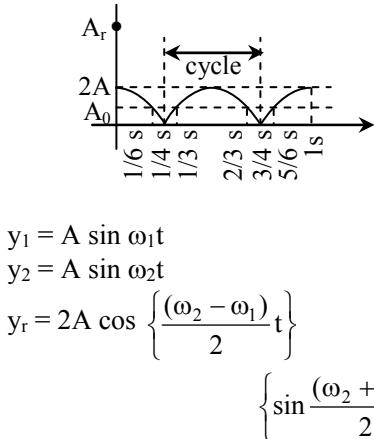
2.[C,D] The capacitances of the two capacitors are $C_1 = 4\pi\epsilon_0 R$ & $C_2 = 4\pi\epsilon_0(2R)$

The initial energy, $E_i = \frac{Q^2}{2C_1}$

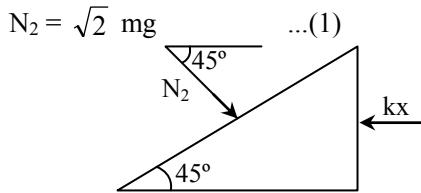
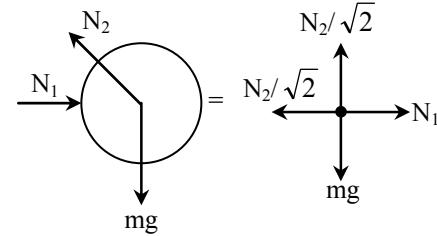
The final energy, $E_f = \frac{Q^2}{2C_2}$

The heat produced = $E_i - E_f$

$$= \frac{Q^2}{2} \left[\frac{1}{4\pi\epsilon_0 R} - \frac{1}{2 \times 4\pi \epsilon_0 R} \right]$$


$$= k \frac{Q^2}{2R} \left(1 - \frac{1}{2} \right) = \frac{kQ^2}{4R}$$

3.[A,C] $\log \left| \frac{dN}{dt} \right| = \log (N_0\lambda) - \lambda t$



\therefore At $t = 0$, $A_0 = \log \left| \frac{dN}{dt} \right| = \log (N_0\lambda)$

13.[8.00]

14.[1.00]

$$\frac{N_2}{\sqrt{2}} = kx$$

$$\frac{\sqrt{2}mg}{\sqrt{2}} = kx$$

$$x = \frac{mg}{k}$$

Section - III

15.[C]

16.[A] Initial and final charges on capacitor are shown in figure a and b respectively charge flown through AB is $\frac{CE}{5}$ work done by battery

$$= W_b = (Q - Q_{\text{take}}) \epsilon$$

$$\text{Heat produced} = W_b - \Delta U = \frac{C\epsilon^2}{105} \text{ J}$$

$$\text{Initially } C_{\text{eq}} = \frac{50}{21}C ; Q = \frac{50}{21}CE$$

$$U = \frac{1}{2} \times \frac{50}{21} \times CE^2$$

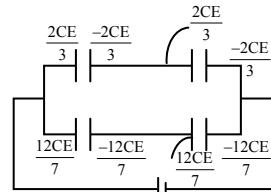


fig (a)

$$\text{Finally } C'_{\text{eq}} = \frac{12}{5}C ; Q' = \frac{12}{5}CE$$

$$U' = \frac{1}{2} \times \frac{12}{5} CE^2 = \frac{6}{5} CE^2$$

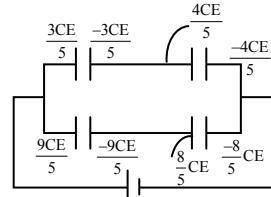


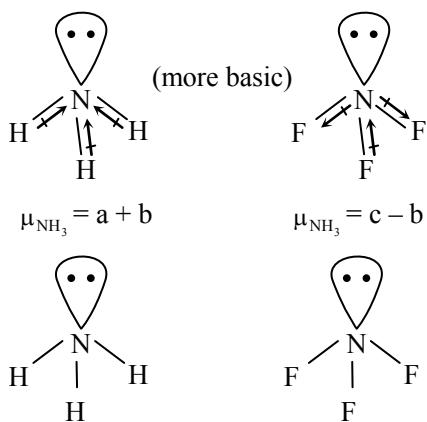
fig (b)

$$17.[C] \quad \dot{q} \left(\frac{4}{3} \pi r_0^3 \right) = h (4\pi r_0^2) (T_s - T_f)$$

$$(T_s - T_f) = \frac{\dot{q} r_0}{3h}$$

$$18.[C] \quad - \frac{dT}{dr} \propto r$$

$$\therefore \frac{-\frac{dT}{dr}}{-\frac{dT}{dr} \Big|_{r=r_0}} = \frac{1}{2}$$

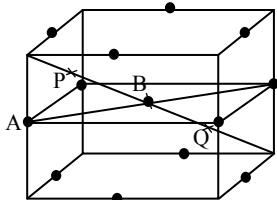

CHEMISTRY

Section - I

19.[A,B,D] $R-C\ddot{N}H_2$ has least +ve charge density among all of the given compound.

20.[A,B,D] $IE_1 = 100, IE_2 = 150$

21.[A,B,D]

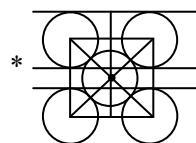


Electronegativity of terminal decreases B.A. \downarrow

22.[A,C,D] * Work is the form of energy between system and surrounding in adiabatic process
 * Intensive property is not additive in nature
 * Work done in free expansion for ideal gas is zero
 * For an isolated system the entropy either increases or remain constant.

23.[A,D] (a) $BaO_2 + H_2O \longrightarrow Ba(OH)_2 + H_2O_2$
 (b) $Na_2O_2 + H_2O \rightarrow NaOH + H_2O_2$

24.[A,B,C,D]



$$* AB = \frac{\sqrt{2}a}{2} \text{ and in CCP} \Rightarrow \sqrt{2}a = 4r$$

$$\therefore AB = 2r$$

$$* PQ = \frac{\sqrt{3}a}{2} \text{ and } PQ = \frac{\sqrt{3}}{2} \times 2\sqrt{2}r = \sqrt{6}r$$

$$* PB = \frac{\sqrt{3}a}{4} = \frac{\sqrt{3}}{4} \times 2\sqrt{2}r = \frac{\sqrt{3}}{2}r$$

Distance between the surface of atoms

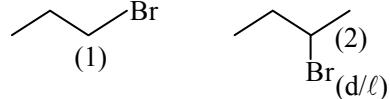
$$= a - 2r$$

$$= a - \frac{\sqrt{2}a}{2} = a - \frac{a}{\sqrt{2}}$$

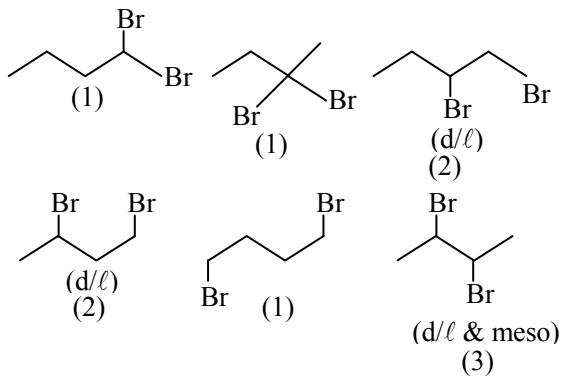
$$= a \left(\frac{\sqrt{2} - 1}{\sqrt{2}} \right)$$

We know $\sqrt{2}a = 4r$

$$= \frac{4r}{\sqrt{2}} \frac{(\sqrt{2} - 1)}{\sqrt{2}}$$


$$= 2r(\sqrt{2} - 1)$$

Section - II

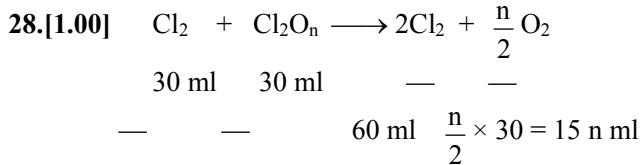

25.[6.00] A, B, C, D, F & G

show mutarotation because these molecule have $-OH$ group on anomeric carbon.

26.[8.00] Mono brominated products are

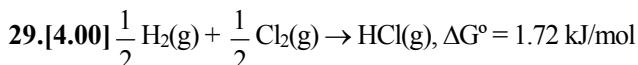
Dominated products are

27.[4.00] $\Delta T_b = K_b \times \frac{W_B}{M_B} \times \frac{1000}{W_A}$


$$(47.98 - 46.3) = 2.34 \times \frac{28}{M_{B \text{ exp.}}} \times \frac{1000}{315}$$

$$M_{B \text{ exp.}} = 123.8$$

$$i = \frac{M_{\text{normal}}}{M_{\text{abnormal}}} \text{ or } \frac{M_{\text{theoretical}}}{M_{\text{exp.}}} = 1 - \alpha + \frac{\alpha}{n}$$


if $\alpha = 1$ (degree of association)

$$\frac{31}{123.8} = \frac{1}{n} \Rightarrow n = 4 \text{ or } n = 4$$

KOH will absorb Cl_2 gas

$$\therefore 15n = 15 \\ n = 1$$

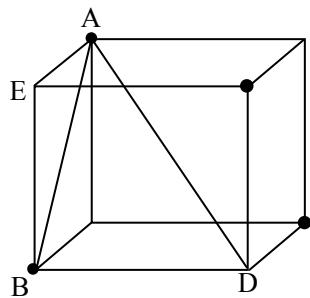
and ΔG° for $2\text{HCl}(\text{g}) \rightleftharpoons \text{H}_2(\text{g}) + \text{Cl}_2(\text{g})$ is

$$\Delta G^\circ = \Sigma \Delta G^\circ_{\text{products}} - \Sigma \Delta G^\circ_{\text{reactant}}$$

$$\Delta G^\circ = 0 - 2 \times 1.72$$

$$\Delta G^\circ = -2.303 \text{ RT} \log K_p$$

$$-3.44 \times 10^3 = -5700 \log k_p$$


$$\log k_p = 0.6$$

$$k_p = 4$$

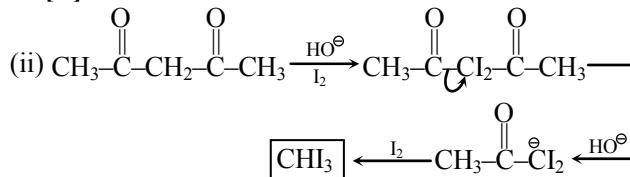
30.[4.00] Nylon-6 and Teflon are homo polymer rest all are co-polymer.

31.[3.00] The products those give Tollen's test are HCHO , HCOOH and CH_3CHO

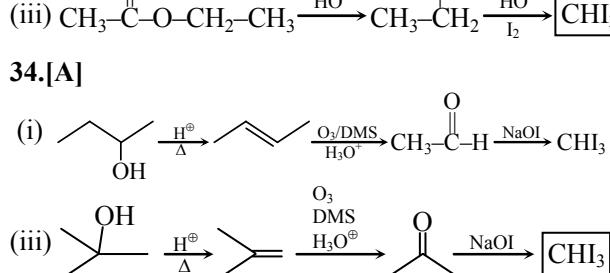
32.[6.00]

$$AB = 2R$$

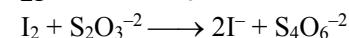
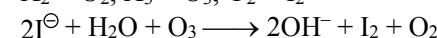
$$\text{BE edge length} = \frac{2R}{\sqrt{2}}$$


$$\therefore \text{Body diagonal AD} = \sqrt{3} \text{ BE}$$

$$= \sqrt{3} \times \frac{2R}{\sqrt{2}} \\ = \sqrt{6} R$$

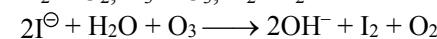

$$\therefore x = 6$$

Section - III



33.[B]

34.[A]

35.[B] $X_2 = \text{O}_2$, $X_3 = \text{O}_3$, $Y_2 = \text{I}_2$



I_2 + starch sol \longrightarrow Blue

$\text{I}_2 + \text{I}^\ominus$ (excess) $\longrightarrow \text{I}_3^\ominus$ (Brown coloured I_3^\ominus ion)

O_3 is pale blue gas which has characteristic small

36.[D] $X_2 = \text{O}_2$, $X_3 = \text{O}_3$, $Y_2 = \text{I}_2$

I_2 + starch sol \longrightarrow Blue

$\text{I}_2 + \text{I}^\ominus$ (excess) $\longrightarrow \text{I}_3^\ominus$ (Brown coloured I_3^\ominus ion)

O_3 is pale blue gas which has characteristic small.

MATHEMATICS

Section - I

$$37.[\text{C},\text{D}] \frac{\sin\left(\frac{\pi}{12}\right)}{\sin x} + \frac{\cos\left(\frac{\pi}{12}\right)}{\cos x} = 2$$

$$\sin\left(x + \frac{\pi}{12}\right) = \sin 2x$$

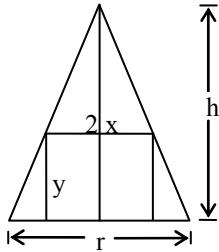
$$x = \frac{\pi}{12}, \frac{11\pi}{36}$$

38.[A,D] S is a point circle which represent point $(2, -3)$ and this point also lies on line L.

39.[B,D] $f: (0, \infty) \rightarrow (-\infty, \infty)$ be defined as $f(x) = e^x + \ell \ln x$

$$f'(x) = e^x + \frac{1}{x} > 0, x \in (0, \infty)$$

$$\lim_{x \rightarrow \infty} f(x) = \infty \text{ and } \lim_{x \rightarrow 0^+} f(x) = -\infty$$


48.[2.00] $\therefore f(0) = \frac{1}{3}$

$$\begin{aligned} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{f(h) + 2xh(x+h) - \frac{1}{3}}{h} \\ &= 2x^2 + 2xh + \lim_{h \rightarrow 0} \frac{f(h) - \frac{1}{3}}{h} \\ f'(x) &= 2x^2 + f'(0) \quad \forall f'(0) = \frac{4}{3} \end{aligned}$$

$$\text{So } f(x) = \frac{2x^3}{3} + \frac{4x}{3} + \frac{1}{3}$$

$$\text{So } \int_{-3}^3 f(x) dx = 0 + 0 + 2$$

49.[9.00] Volume of cone $v_1 = \frac{1}{3}\pi r^2 h$

$$\text{From figure } \frac{x}{h-y} = \frac{r}{h}$$

$$\text{i.e. } h-y = \frac{h}{r}x \text{ or } y = h(1-\frac{x}{r})$$

If v be the volume of the cylinder, then

$$v = \pi x^2 y = \pi x^2 h(1-\frac{x}{r}) = \pi h(x^2 - \frac{x^3}{r})$$

$$\frac{dv}{dx} = \pi h x \left(2 - \frac{3x}{r} \right)$$

$$\begin{array}{c} - + - \\ \hline 0 \quad \frac{2r}{3} \end{array}$$

Hence $x = \frac{2r}{3}$ gives a maximum of v

$$\therefore v_2 = \pi h \left(\frac{2r}{3} \right)^2 \left(1 - \frac{2}{3} \right) = \frac{4}{27} \cdot \pi r^2 h$$

$$\therefore \frac{v_1}{v_2} = \frac{1/3}{4/27} = \frac{9}{4} \quad \text{Thus } 4v_1 : v_2 = 9 : 1$$

50.[3.00] \therefore The equation of line is

$$\frac{x-2}{1} = \frac{y-1}{1} = \frac{z+1}{-1/2}$$

Now $(\hat{i} + \hat{j} - \frac{\hat{k}}{2}) \cdot (\hat{i} + 2\hat{j} + 6\hat{k}) = 0$

So line is parallel to plane so \perp^r distance of any point lie on the line is same so distance of point

$$(2, 1, \frac{-1}{2}) \text{ from plane } x + 2y + 6z = 10 \text{ is}$$

$$\frac{|2+2-\frac{6}{2}-10|}{\sqrt{1+4+36}} = \frac{9}{\sqrt{41}}.$$

Section - III

51.[A]

$$F(n,p) = \frac{n^p - \binom{n}{1}(n-1)^p + \binom{n}{2}(n-2)^p - \dots + (-1)^{n-1} \binom{n}{n-1} 1^p}{n^p} \quad \dots (i)$$

$$F(4,6) = \frac{4^6 - \binom{4}{1}3^6 + \binom{4}{2}2^6 - \binom{4}{3}1^6}{4^6} = \frac{4096 - 2916 + 384 - 4}{4096} = \frac{1560}{4096} = \frac{195}{512}$$

52.[D] Also if $p < n$ then probability is zero and if $p = n$ by (1)

$$\frac{n^n - \binom{n}{1}(n-1)^n + \dots + (-1)^{n-1} \binom{n}{n-1} 1^n}{n^n} = \frac{n!}{n^n}$$

$$\Rightarrow (-1)^{n-1} [{}^n C_1 1^n - {}^n C_2 2^n + {}^n C_3 3^n - \dots + (-1)^{n-1} {}^n C_n n^n] = n!$$

53.[C] $\lim_{n \rightarrow \infty} \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+5n}$

$$\lim_{n \rightarrow \infty} \sum_{r=0}^{5n} \frac{1}{n+r} \Rightarrow \int_0^5 \frac{dx}{1+x} = \log 6$$

$$54.[A] \lim_{n \rightarrow \infty} \sum_{r=1}^{r=n} \frac{n \left(1 + \frac{r}{n} \right)}{n^2 \left(1 + \frac{r^2}{n^2} \right)}$$

$$\begin{aligned} \int_0^1 \frac{1+x}{1+x^2} dx &= \int_0^1 \frac{1}{1+x^2} dx + \int_0^1 \frac{x}{1+x^2} dx \\ &= \left(\tan^{-1} x \right)_0^1 + \frac{1}{2} \left(\log(1+x^2) \right)_0^1 \\ &= \left(\frac{\pi}{4} - 0 \right) + \frac{1}{2} (\log 2 - 0) \end{aligned}$$